Huachuan Feng, Yilin Wang, Xiaofeng Wang, Nan Li, Qiuyang Li, Jin Li, Xiaoming Chen, Qing Wang, Wenkun Zhu
{"title":"生物炭添加量对铀胁迫土壤修复的影响:来自 16S rDNA 和代谢组学的证据","authors":"Huachuan Feng, Yilin Wang, Xiaofeng Wang, Nan Li, Qiuyang Li, Jin Li, Xiaoming Chen, Qing Wang, Wenkun Zhu","doi":"10.1021/acsestengg.4c00115","DOIUrl":null,"url":null,"abstract":"The addition of soil amendments to facilitate plant-based remediation of soil contaminated with radioactive nuclides is considered a promising approach. Here, we tested different levels of biochar to help clean uranium-contaminated soil in the potted plants. Adding 1% biochar had the best results in deactivating uranium, increasing soil enzyme activity, and promoting ryegrass growth. Microbiological and metabolomic analysis further revealed that 1 wt % biochar significantly enhanced the abundance of microorganisms such as Actinobacteriota and Myxococcota and accelerated the production of differential metabolites such as lipids and lipid-like molecules, organic acids and derivatives, and organic oxygen compounds. The analysis of biological and nonbiological interaction networks indicates that the coordinated interaction between bacteria, enzymes, and metabolites significantly improves the expression level of the ABC transporter’s metabolic pathway. This enhances the resistance of living cells to uranium and maintains system homeostasis under uranium stress. This study provides an example of the application of biochar-assisted phytoremediation and offers theoretical guidance for the remediation of soil contaminated with radioactive nuclides.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Biochar Addition Levels on Remediation of Uranium-Stressed Soil: Evidence from 16S rDNA and Metabolomics\",\"authors\":\"Huachuan Feng, Yilin Wang, Xiaofeng Wang, Nan Li, Qiuyang Li, Jin Li, Xiaoming Chen, Qing Wang, Wenkun Zhu\",\"doi\":\"10.1021/acsestengg.4c00115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The addition of soil amendments to facilitate plant-based remediation of soil contaminated with radioactive nuclides is considered a promising approach. Here, we tested different levels of biochar to help clean uranium-contaminated soil in the potted plants. Adding 1% biochar had the best results in deactivating uranium, increasing soil enzyme activity, and promoting ryegrass growth. Microbiological and metabolomic analysis further revealed that 1 wt % biochar significantly enhanced the abundance of microorganisms such as Actinobacteriota and Myxococcota and accelerated the production of differential metabolites such as lipids and lipid-like molecules, organic acids and derivatives, and organic oxygen compounds. The analysis of biological and nonbiological interaction networks indicates that the coordinated interaction between bacteria, enzymes, and metabolites significantly improves the expression level of the ABC transporter’s metabolic pathway. This enhances the resistance of living cells to uranium and maintains system homeostasis under uranium stress. This study provides an example of the application of biochar-assisted phytoremediation and offers theoretical guidance for the remediation of soil contaminated with radioactive nuclides.\",\"PeriodicalId\":7008,\"journal\":{\"name\":\"ACS ES&T engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsestengg.4c00115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsestengg.4c00115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Impact of Biochar Addition Levels on Remediation of Uranium-Stressed Soil: Evidence from 16S rDNA and Metabolomics
The addition of soil amendments to facilitate plant-based remediation of soil contaminated with radioactive nuclides is considered a promising approach. Here, we tested different levels of biochar to help clean uranium-contaminated soil in the potted plants. Adding 1% biochar had the best results in deactivating uranium, increasing soil enzyme activity, and promoting ryegrass growth. Microbiological and metabolomic analysis further revealed that 1 wt % biochar significantly enhanced the abundance of microorganisms such as Actinobacteriota and Myxococcota and accelerated the production of differential metabolites such as lipids and lipid-like molecules, organic acids and derivatives, and organic oxygen compounds. The analysis of biological and nonbiological interaction networks indicates that the coordinated interaction between bacteria, enzymes, and metabolites significantly improves the expression level of the ABC transporter’s metabolic pathway. This enhances the resistance of living cells to uranium and maintains system homeostasis under uranium stress. This study provides an example of the application of biochar-assisted phytoremediation and offers theoretical guidance for the remediation of soil contaminated with radioactive nuclides.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.