Huayang Xu, Hongzhen Zhang, Guoyu Wei, Yuling Jiang, Meto Yao Charles, Anlong Hu
{"title":"水稻(Oryza sativa L.)幼苗对抗生素卡苏霉素从叶片到根部的吸收和运输","authors":"Huayang Xu, Hongzhen Zhang, Guoyu Wei, Yuling Jiang, Meto Yao Charles, Anlong Hu","doi":"10.1111/aab.12928","DOIUrl":null,"url":null,"abstract":"<p>Kasugamycin (KSM), an aminoglycoside antibiotic, has been widely used as a natural fungicide to control plant diseases, particularly for managing rice blast. However, its uptake mechanism and transport in rice remain to be explored. In this article, rice seedlings were treated by the foliar spraying method, and the content of KSM in rice leaves, stems and roots under different treatments was detected by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS), respectively. Results showed that leaf-applied KSM could be transported to the phloem and migrate to roots and stems after uptake by leaves. Concentration, temperature and pH had significant effects on the uptake of KSM. Compared with the control, the competitive inhibitors <span>d</span>-glucose and phlorizin both inhibited the uptake of KSM, demonstrating that sugar transporter proteins were involved in the uptake process. The energy inhibitors dinitrophenol (DNP) and carbonyl cyanide chlorophenylhydrazone (CCCP) also significantly inhibited the uptake of KSM, indicating that the uptake of KSM required energy consumption. Thus, the uptake of KSM by rice was an active process involving sugar transporter proteins, and it could migrate downward through the phloem. This study contributes to the promotion of the scientific application of antibiotics and the biological control of crop diseases. It will also provide a theoretical basis for the development of root-targeted pesticides and transport pesticides with phloem mobility.</p>","PeriodicalId":7977,"journal":{"name":"Annals of Applied Biology","volume":"185 3","pages":"360-370"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uptake and transport of antibiotic kasugamycin from leaves to roots in rice (Oryza sativa L.) seedlings\",\"authors\":\"Huayang Xu, Hongzhen Zhang, Guoyu Wei, Yuling Jiang, Meto Yao Charles, Anlong Hu\",\"doi\":\"10.1111/aab.12928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Kasugamycin (KSM), an aminoglycoside antibiotic, has been widely used as a natural fungicide to control plant diseases, particularly for managing rice blast. However, its uptake mechanism and transport in rice remain to be explored. In this article, rice seedlings were treated by the foliar spraying method, and the content of KSM in rice leaves, stems and roots under different treatments was detected by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS), respectively. Results showed that leaf-applied KSM could be transported to the phloem and migrate to roots and stems after uptake by leaves. Concentration, temperature and pH had significant effects on the uptake of KSM. Compared with the control, the competitive inhibitors <span>d</span>-glucose and phlorizin both inhibited the uptake of KSM, demonstrating that sugar transporter proteins were involved in the uptake process. The energy inhibitors dinitrophenol (DNP) and carbonyl cyanide chlorophenylhydrazone (CCCP) also significantly inhibited the uptake of KSM, indicating that the uptake of KSM required energy consumption. Thus, the uptake of KSM by rice was an active process involving sugar transporter proteins, and it could migrate downward through the phloem. This study contributes to the promotion of the scientific application of antibiotics and the biological control of crop diseases. It will also provide a theoretical basis for the development of root-targeted pesticides and transport pesticides with phloem mobility.</p>\",\"PeriodicalId\":7977,\"journal\":{\"name\":\"Annals of Applied Biology\",\"volume\":\"185 3\",\"pages\":\"360-370\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/aab.12928\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aab.12928","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Uptake and transport of antibiotic kasugamycin from leaves to roots in rice (Oryza sativa L.) seedlings
Kasugamycin (KSM), an aminoglycoside antibiotic, has been widely used as a natural fungicide to control plant diseases, particularly for managing rice blast. However, its uptake mechanism and transport in rice remain to be explored. In this article, rice seedlings were treated by the foliar spraying method, and the content of KSM in rice leaves, stems and roots under different treatments was detected by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS), respectively. Results showed that leaf-applied KSM could be transported to the phloem and migrate to roots and stems after uptake by leaves. Concentration, temperature and pH had significant effects on the uptake of KSM. Compared with the control, the competitive inhibitors d-glucose and phlorizin both inhibited the uptake of KSM, demonstrating that sugar transporter proteins were involved in the uptake process. The energy inhibitors dinitrophenol (DNP) and carbonyl cyanide chlorophenylhydrazone (CCCP) also significantly inhibited the uptake of KSM, indicating that the uptake of KSM required energy consumption. Thus, the uptake of KSM by rice was an active process involving sugar transporter proteins, and it could migrate downward through the phloem. This study contributes to the promotion of the scientific application of antibiotics and the biological control of crop diseases. It will also provide a theoretical basis for the development of root-targeted pesticides and transport pesticides with phloem mobility.
期刊介绍:
Annals of Applied Biology is an international journal sponsored by the Association of Applied Biologists. The journal publishes original research papers on all aspects of applied research on crop production, crop protection and the cropping ecosystem. The journal is published both online and in six printed issues per year.
Annals papers must contribute substantially to the advancement of knowledge and may, among others, encompass the scientific disciplines of:
Agronomy
Agrometeorology
Agrienvironmental sciences
Applied genomics
Applied metabolomics
Applied proteomics
Biodiversity
Biological control
Climate change
Crop ecology
Entomology
Genetic manipulation
Molecular biology
Mycology
Nematology
Pests
Plant pathology
Plant breeding & genetics
Plant physiology
Post harvest biology
Soil science
Statistics
Virology
Weed biology
Annals also welcomes reviews of interest in these subject areas. Reviews should be critical surveys of the field and offer new insights. All papers are subject to peer review. Papers must usually contribute substantially to the advancement of knowledge in applied biology but short papers discussing techniques or substantiated results, and reviews of current knowledge of interest to applied biologists will be considered for publication. Papers or reviews must not be offered to any other journal for prior or simultaneous publication and normally average seven printed pages.