La2NiO4 中的应变调谐不相容磁交换相互作用

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Izabela Biało, Leonardo Martinelli, Gabriele De Luca, Paul Worm, Annabella Drewanowski, Simon Jöhr, Jaewon Choi, Mirian Garcia-Fernandez, Stefano Agrestini, Ke-Jin Zhou, Kurt Kummer, Nicholas B. Brookes, Luo Guo, Anthony Edgeton, Chang B. Eom, Jan M. Tomczak, Karsten Held, Marta Gibert, Qisi Wang, Johan Chang
{"title":"La2NiO4 中的应变调谐不相容磁交换相互作用","authors":"Izabela Biało, Leonardo Martinelli, Gabriele De Luca, Paul Worm, Annabella Drewanowski, Simon Jöhr, Jaewon Choi, Mirian Garcia-Fernandez, Stefano Agrestini, Ke-Jin Zhou, Kurt Kummer, Nicholas B. Brookes, Luo Guo, Anthony Edgeton, Chang B. Eom, Jan M. Tomczak, Karsten Held, Marta Gibert, Qisi Wang, Johan Chang","doi":"10.1038/s42005-024-01701-x","DOIUrl":null,"url":null,"abstract":"Magnetic frustration is a route for novel ground states, including spin liquids and spin ices. Such frustration can be introduced through either lattice geometry or incompatible exchange interactions. Here, we find that epitaxial strain is an effective tool for tuning antiferromagnetic exchange interactions in a square-lattice system. By studying the magnon excitations in La2NiO4 films using resonant inelastic x-ray scattering, we show that the magnon displays substantial dispersion along the antiferromagnetic zone boundary, at energies that depend on the lattice of the film’s substrate. Using first principles simulations and an effective spin model, we demonstrate that the antiferromagnetic next-nearest neighbour coupling is a consequence of the two-orbital nature of La2NiO4. Altogether, we illustrate that compressive epitaxial strain enhances this coupling and, as a result, increases the level of incompatibility between exchange interactions within a model square-lattice system. Frustration in magnetic systems may lead to exotic quantum phases such as spin liquid and spin ice state. Here the authors demonstrate that compressive epitaxial strain in La2NiO4 films deposited on different substrates can tune antiferromagnetic exchange interactions and increase the degree of frustration through the increased level of incompatibility between exchange interactions.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01701-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Strain-tuned incompatible magnetic exchange-interaction in La2NiO4\",\"authors\":\"Izabela Biało, Leonardo Martinelli, Gabriele De Luca, Paul Worm, Annabella Drewanowski, Simon Jöhr, Jaewon Choi, Mirian Garcia-Fernandez, Stefano Agrestini, Ke-Jin Zhou, Kurt Kummer, Nicholas B. Brookes, Luo Guo, Anthony Edgeton, Chang B. Eom, Jan M. Tomczak, Karsten Held, Marta Gibert, Qisi Wang, Johan Chang\",\"doi\":\"10.1038/s42005-024-01701-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic frustration is a route for novel ground states, including spin liquids and spin ices. Such frustration can be introduced through either lattice geometry or incompatible exchange interactions. Here, we find that epitaxial strain is an effective tool for tuning antiferromagnetic exchange interactions in a square-lattice system. By studying the magnon excitations in La2NiO4 films using resonant inelastic x-ray scattering, we show that the magnon displays substantial dispersion along the antiferromagnetic zone boundary, at energies that depend on the lattice of the film’s substrate. Using first principles simulations and an effective spin model, we demonstrate that the antiferromagnetic next-nearest neighbour coupling is a consequence of the two-orbital nature of La2NiO4. Altogether, we illustrate that compressive epitaxial strain enhances this coupling and, as a result, increases the level of incompatibility between exchange interactions within a model square-lattice system. Frustration in magnetic systems may lead to exotic quantum phases such as spin liquid and spin ice state. Here the authors demonstrate that compressive epitaxial strain in La2NiO4 films deposited on different substrates can tune antiferromagnetic exchange interactions and increase the degree of frustration through the increased level of incompatibility between exchange interactions.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01701-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01701-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01701-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁沮度是包括自旋液体和自旋冰在内的新型基态的形成途径。这种挫折可以通过晶格几何或不相容的交换相互作用引入。在这里,我们发现外延应变是调整方晶格体系中反铁磁交换相互作用的有效工具。通过使用共振非弹性 X 射线散射来研究 La2NiO4 薄膜中的磁子激发,我们发现磁子沿着反铁磁区边界显示出很大的分散性,其能量取决于薄膜基底的晶格。利用第一原理模拟和有效自旋模型,我们证明了反铁磁性近邻耦合是 La2NiO4 双轨道性质的结果。总之,我们说明了压缩外延应变会增强这种耦合,并因此增加模型方晶格系统内交换相互作用之间的不相容程度。磁性系统中的挫折可能会导致奇异的量子相,如自旋液态和自旋冰态。作者在此证明,沉积在不同基底上的 La2NiO4 薄膜中的压缩外延应变可以调整反铁磁交换相互作用,并通过增加交换相互作用之间的不相容程度来提高挫折程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strain-tuned incompatible magnetic exchange-interaction in La2NiO4

Strain-tuned incompatible magnetic exchange-interaction in La2NiO4
Magnetic frustration is a route for novel ground states, including spin liquids and spin ices. Such frustration can be introduced through either lattice geometry or incompatible exchange interactions. Here, we find that epitaxial strain is an effective tool for tuning antiferromagnetic exchange interactions in a square-lattice system. By studying the magnon excitations in La2NiO4 films using resonant inelastic x-ray scattering, we show that the magnon displays substantial dispersion along the antiferromagnetic zone boundary, at energies that depend on the lattice of the film’s substrate. Using first principles simulations and an effective spin model, we demonstrate that the antiferromagnetic next-nearest neighbour coupling is a consequence of the two-orbital nature of La2NiO4. Altogether, we illustrate that compressive epitaxial strain enhances this coupling and, as a result, increases the level of incompatibility between exchange interactions within a model square-lattice system. Frustration in magnetic systems may lead to exotic quantum phases such as spin liquid and spin ice state. Here the authors demonstrate that compressive epitaxial strain in La2NiO4 films deposited on different substrates can tune antiferromagnetic exchange interactions and increase the degree of frustration through the increased level of incompatibility between exchange interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信