{"title":"跨细胞单层双向转运实验测定的外流比率与 pH 值的关系","authors":"Soné Kotze , Kai-Uwe Goss , Andrea Ebert","doi":"10.1016/j.ijpx.2024.100269","DOIUrl":null,"url":null,"abstract":"<div><p>MDCK/Caco-2 assays serve as essential in vitro tools for evaluating membrane permeability and active transport, especially mediated by P-glycoprotein (P-gp). Despite their utility, challenges remain in quantifying active transport and using the efflux ratio (ER) to determine intrinsic values for active efflux. Such an intrinsic value for P-gp facilitated efflux necessitates knowing whether this transporter transports the neutral or ionic species of a compound. Utilising MDCK-MDR1 assays, we investigate a method for determining transporter substrate fraction preference by studying ER pH-dependence for basic, acidic and non-dissociating compounds. These results are compared with model fits based on various assumptions of transporter species preference. As an unexpected consequence of these assays, we also give evidence for an additional influx transporter at the basolateral membrane, and further extend our model to incorporate this transport. The combined influences of paracellular transport, the previously unaccounted for basolateral influx transporter, as well as potential pH effects on the transporter impedes the extraction of intrinsic values for active transport from the ER. Furthermore, we determined that using inhibitor affects the measurement of paracellular transport. While clear indications of transporter species preference remain elusive, this study enhances understanding of the MDCK system.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100269"},"PeriodicalIF":5.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000410/pdfft?md5=836d8c4dc4474fe1aa86bde0b6c72993&pid=1-s2.0-S2590156724000410-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The pH-dependence of efflux ratios determined with bidirectional transport assays across cellular monolayers\",\"authors\":\"Soné Kotze , Kai-Uwe Goss , Andrea Ebert\",\"doi\":\"10.1016/j.ijpx.2024.100269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>MDCK/Caco-2 assays serve as essential in vitro tools for evaluating membrane permeability and active transport, especially mediated by P-glycoprotein (P-gp). Despite their utility, challenges remain in quantifying active transport and using the efflux ratio (ER) to determine intrinsic values for active efflux. Such an intrinsic value for P-gp facilitated efflux necessitates knowing whether this transporter transports the neutral or ionic species of a compound. Utilising MDCK-MDR1 assays, we investigate a method for determining transporter substrate fraction preference by studying ER pH-dependence for basic, acidic and non-dissociating compounds. These results are compared with model fits based on various assumptions of transporter species preference. As an unexpected consequence of these assays, we also give evidence for an additional influx transporter at the basolateral membrane, and further extend our model to incorporate this transport. The combined influences of paracellular transport, the previously unaccounted for basolateral influx transporter, as well as potential pH effects on the transporter impedes the extraction of intrinsic values for active transport from the ER. Furthermore, we determined that using inhibitor affects the measurement of paracellular transport. While clear indications of transporter species preference remain elusive, this study enhances understanding of the MDCK system.</p></div>\",\"PeriodicalId\":14280,\"journal\":{\"name\":\"International Journal of Pharmaceutics: X\",\"volume\":\"8 \",\"pages\":\"Article 100269\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590156724000410/pdfft?md5=836d8c4dc4474fe1aa86bde0b6c72993&pid=1-s2.0-S2590156724000410-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics: X\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590156724000410\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156724000410","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The pH-dependence of efflux ratios determined with bidirectional transport assays across cellular monolayers
MDCK/Caco-2 assays serve as essential in vitro tools for evaluating membrane permeability and active transport, especially mediated by P-glycoprotein (P-gp). Despite their utility, challenges remain in quantifying active transport and using the efflux ratio (ER) to determine intrinsic values for active efflux. Such an intrinsic value for P-gp facilitated efflux necessitates knowing whether this transporter transports the neutral or ionic species of a compound. Utilising MDCK-MDR1 assays, we investigate a method for determining transporter substrate fraction preference by studying ER pH-dependence for basic, acidic and non-dissociating compounds. These results are compared with model fits based on various assumptions of transporter species preference. As an unexpected consequence of these assays, we also give evidence for an additional influx transporter at the basolateral membrane, and further extend our model to incorporate this transport. The combined influences of paracellular transport, the previously unaccounted for basolateral influx transporter, as well as potential pH effects on the transporter impedes the extraction of intrinsic values for active transport from the ER. Furthermore, we determined that using inhibitor affects the measurement of paracellular transport. While clear indications of transporter species preference remain elusive, this study enhances understanding of the MDCK system.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.