Muhammad Abdurrahman Rois , Fatmawati , Cicik Alfiniyah , Santi Martini , Dipo Aldila , Farai Nyabadza
{"title":"印度尼西亚 COVID-19 合并症和三剂疫苗接种的建模和优化控制","authors":"Muhammad Abdurrahman Rois , Fatmawati , Cicik Alfiniyah , Santi Martini , Dipo Aldila , Farai Nyabadza","doi":"10.1016/j.jobb.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents and examines a COVID-19 model that takes comorbidities and up to three vaccine doses into account. We analyze the stability of the equilibria, examine herd immunity, and conduct a sensitivity analysis validated by data on COVID-19 in Indonesia. The disease-free equilibrium is locally and globally asymptotically stable whenever the basic reproduction number is less than one, while an endemic equilibrium exists and is globally asymptotically stable when the number is greater than one. Subsequently, the model incorporates two effective measures, namely public education and enhanced medical care, to determine the most advantageous approach for mitigating the transmission of the disease. The optimal control model is then determined using Pontryagin’s maximum principle. The integrated control strategy is the best method for reliably safeguarding the general population against COVID-19 infection. Cost evaluations and numerical simulations corroborate this conclusion.</p></div>","PeriodicalId":52875,"journal":{"name":"Journal of Biosafety and Biosecurity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588933824000347/pdfft?md5=e3f237c1b54058dbee82e284d716e498&pid=1-s2.0-S2588933824000347-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modeling and optimal control of COVID-19 with comorbidity and three-dose vaccination in Indonesia\",\"authors\":\"Muhammad Abdurrahman Rois , Fatmawati , Cicik Alfiniyah , Santi Martini , Dipo Aldila , Farai Nyabadza\",\"doi\":\"10.1016/j.jobb.2024.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents and examines a COVID-19 model that takes comorbidities and up to three vaccine doses into account. We analyze the stability of the equilibria, examine herd immunity, and conduct a sensitivity analysis validated by data on COVID-19 in Indonesia. The disease-free equilibrium is locally and globally asymptotically stable whenever the basic reproduction number is less than one, while an endemic equilibrium exists and is globally asymptotically stable when the number is greater than one. Subsequently, the model incorporates two effective measures, namely public education and enhanced medical care, to determine the most advantageous approach for mitigating the transmission of the disease. The optimal control model is then determined using Pontryagin’s maximum principle. The integrated control strategy is the best method for reliably safeguarding the general population against COVID-19 infection. Cost evaluations and numerical simulations corroborate this conclusion.</p></div>\",\"PeriodicalId\":52875,\"journal\":{\"name\":\"Journal of Biosafety and Biosecurity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2588933824000347/pdfft?md5=e3f237c1b54058dbee82e284d716e498&pid=1-s2.0-S2588933824000347-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biosafety and Biosecurity\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588933824000347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosafety and Biosecurity","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588933824000347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Modeling and optimal control of COVID-19 with comorbidity and three-dose vaccination in Indonesia
This paper presents and examines a COVID-19 model that takes comorbidities and up to three vaccine doses into account. We analyze the stability of the equilibria, examine herd immunity, and conduct a sensitivity analysis validated by data on COVID-19 in Indonesia. The disease-free equilibrium is locally and globally asymptotically stable whenever the basic reproduction number is less than one, while an endemic equilibrium exists and is globally asymptotically stable when the number is greater than one. Subsequently, the model incorporates two effective measures, namely public education and enhanced medical care, to determine the most advantageous approach for mitigating the transmission of the disease. The optimal control model is then determined using Pontryagin’s maximum principle. The integrated control strategy is the best method for reliably safeguarding the general population against COVID-19 infection. Cost evaluations and numerical simulations corroborate this conclusion.