{"title":"圆形刚性板轴对称压入下非均质土工材料半空间的精确弹性场","authors":"Sha Xiao , Zhongqi Quentin Yue","doi":"10.1016/j.mechrescom.2024.104308","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines non-homogeneous geo-material halfspaces under the axisymmetric indentation of a circular rigid plate. A multilayered model is proposed to approximate arbitrary variations of the elastic parameters in geo-materials with depth. The non-homogeneous geo-material halfspaces can have variable shear modulus and Poisson's ratio with depth. Numerical verification is performed for the contact problem of a non-homogeneous halfspace with variable shear modulus and constant Poisson's ratio. Results illustrate the effects of material inhomogeneity on the elastic fields of a non-homogeneous halfspace.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate elastic field in non-homogeneous geo-material halfspace under axisymmetric indentation of circular rigid plate\",\"authors\":\"Sha Xiao , Zhongqi Quentin Yue\",\"doi\":\"10.1016/j.mechrescom.2024.104308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper examines non-homogeneous geo-material halfspaces under the axisymmetric indentation of a circular rigid plate. A multilayered model is proposed to approximate arbitrary variations of the elastic parameters in geo-materials with depth. The non-homogeneous geo-material halfspaces can have variable shear modulus and Poisson's ratio with depth. Numerical verification is performed for the contact problem of a non-homogeneous halfspace with variable shear modulus and constant Poisson's ratio. Results illustrate the effects of material inhomogeneity on the elastic fields of a non-homogeneous halfspace.</p></div>\",\"PeriodicalId\":49846,\"journal\":{\"name\":\"Mechanics Research Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics Research Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093641324000685\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics Research Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093641324000685","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Accurate elastic field in non-homogeneous geo-material halfspace under axisymmetric indentation of circular rigid plate
This paper examines non-homogeneous geo-material halfspaces under the axisymmetric indentation of a circular rigid plate. A multilayered model is proposed to approximate arbitrary variations of the elastic parameters in geo-materials with depth. The non-homogeneous geo-material halfspaces can have variable shear modulus and Poisson's ratio with depth. Numerical verification is performed for the contact problem of a non-homogeneous halfspace with variable shear modulus and constant Poisson's ratio. Results illustrate the effects of material inhomogeneity on the elastic fields of a non-homogeneous halfspace.
期刊介绍:
Mechanics Research Communications publishes, as rapidly as possible, peer-reviewed manuscripts of high standards but restricted length. It aims to provide:
• a fast means of communication
• an exchange of ideas among workers in mechanics
• an effective method of bringing new results quickly to the public
• an informal vehicle for the discussion
• of ideas that may still be in the formative stages
The field of Mechanics will be understood to encompass the behavior of continua, fluids, solids, particles and their mixtures. Submissions must contain a strong, novel contribution to the field of mechanics, and ideally should be focused on current issues in the field involving theoretical, experimental and/or applied research, preferably within the broad expertise encompassed by the Board of Associate Editors. Deviations from these areas should be discussed in advance with the Editor-in-Chief.