{"title":"函数域中的概率伽罗瓦理论","authors":"Alexei Entin, Alexander Popov","doi":"10.1016/j.ffa.2024.102466","DOIUrl":null,"url":null,"abstract":"<div><p>We study the irreducibility and Galois group of random polynomials over function fields. We prove that a random polynomial <span><math><mi>f</mi><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo><mo>[</mo><mi>y</mi><mo>]</mo></math></span> with i.i.d. coefficients <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> taking values in the set <span><math><mo>{</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo><mo>:</mo><mi>deg</mi><mo></mo><mi>a</mi><mo>≤</mo><mi>d</mi><mo>}</mo></math></span> with uniform probability, is irreducible with probability tending to <span><math><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></mfrac></math></span> as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>, where <em>d</em> and <em>q</em> are fixed. We also prove that with the same probability, the Galois group of this random polynomial contains the alternating group <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Moreover, we prove that if we assume a version of the polynomial Chowla conjecture over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, then the Galois group of this polynomial is actually equal to the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with probability tending to <span><math><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></mfrac></math></span>. We also study the other possible Galois groups occurring with positive limit probability. Finally, we study the same problems with <em>n</em> fixed and <span><math><mi>d</mi><mo>→</mo><mo>∞</mo></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"98 ","pages":"Article 102466"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Galois theory in function fields\",\"authors\":\"Alexei Entin, Alexander Popov\",\"doi\":\"10.1016/j.ffa.2024.102466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the irreducibility and Galois group of random polynomials over function fields. We prove that a random polynomial <span><math><mi>f</mi><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo><mo>[</mo><mi>y</mi><mo>]</mo></math></span> with i.i.d. coefficients <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> taking values in the set <span><math><mo>{</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo><mo>:</mo><mi>deg</mi><mo></mo><mi>a</mi><mo>≤</mo><mi>d</mi><mo>}</mo></math></span> with uniform probability, is irreducible with probability tending to <span><math><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></mfrac></math></span> as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>, where <em>d</em> and <em>q</em> are fixed. We also prove that with the same probability, the Galois group of this random polynomial contains the alternating group <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Moreover, we prove that if we assume a version of the polynomial Chowla conjecture over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, then the Galois group of this polynomial is actually equal to the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with probability tending to <span><math><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></mfrac></math></span>. We also study the other possible Galois groups occurring with positive limit probability. Finally, we study the same problems with <em>n</em> fixed and <span><math><mi>d</mi><mo>→</mo><mo>∞</mo></math></span>.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"98 \",\"pages\":\"Article 102466\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001059\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001059","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study the irreducibility and Galois group of random polynomials over function fields. We prove that a random polynomial with i.i.d. coefficients taking values in the set with uniform probability, is irreducible with probability tending to as , where d and q are fixed. We also prove that with the same probability, the Galois group of this random polynomial contains the alternating group . Moreover, we prove that if we assume a version of the polynomial Chowla conjecture over , then the Galois group of this polynomial is actually equal to the symmetric group with probability tending to . We also study the other possible Galois groups occurring with positive limit probability. Finally, we study the same problems with n fixed and .
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.