{"title":"血清代谢物与女性癌症之间的关系:双向双样本泯灭随机研究","authors":"ZheXu Cao, XiongZhi Long, LiQin Yuan","doi":"10.1016/j.jsbmb.2024.106584","DOIUrl":null,"url":null,"abstract":"<div><p>Female cancers, especially breast, ovarian, cervical, and endometrial cancers, constitute a major threat to women's health worldwide. In view of the complex genetic background of cancers cannot be fully explained with current genetic information, we used a bidirectional two-sample mendelian randomization approach to explore the causal associations between serum metabolites and four major female cancers—breast, ovarian, cervical, and endometrial cancers. We analyzed the metabolites dataset from the Canadian Longitudinal Study of Aging and cancer datasets from the 10th round of the Finngen project. Replication analyses was performed with Cancer Association Consortium and Leo’s studies. Instrumental variables were analyzed using methods including the Wald ratio, inverse-variance weighted, MR-Egger, and weighted median. To ensure robustness, sensitivity analyses were performed using Cochrane’s Q, Egger’s intercept, MR-PRESSO, and leave-one-out methods. After meticulous analysis, we obtained levels of 3-hydroxyoleoylcarnitine, hexadecanedioate, tetradecanedioate, and carnitine C14 with robust causal associations with breast cancer, levels of 5alpha-androstan-3alpha,17beta-diol monosulfate (1), androstenediol (3beta,17beta) monosulfate (1), androsterone sulfate, and 5alpha-androstan-3beta,17beta-diol disulfate causal associations with endometrial cancer. The reverse analysis showed that breast, ovarian, and endometrial cancer and survival of breast and ovarian cancer were found to have causal relationships with 8, 5, 2, 6, and 3 metabolites, respectively. These insights underscore the potential roles of specific metabolites in the etiology of female cancers, providing new biomarkers for early detection, risk stratification, and disease progression monitoring. Further research could elucidate how these metabolites influence specific pathways in cancer development, offering theoretical foundations for prevention and treatment strategies.</p></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":"243 ","pages":"Article 106584"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associations between serum metabolites and female cancers: A bidirectional two-sample mendelian randomization study\",\"authors\":\"ZheXu Cao, XiongZhi Long, LiQin Yuan\",\"doi\":\"10.1016/j.jsbmb.2024.106584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Female cancers, especially breast, ovarian, cervical, and endometrial cancers, constitute a major threat to women's health worldwide. In view of the complex genetic background of cancers cannot be fully explained with current genetic information, we used a bidirectional two-sample mendelian randomization approach to explore the causal associations between serum metabolites and four major female cancers—breast, ovarian, cervical, and endometrial cancers. We analyzed the metabolites dataset from the Canadian Longitudinal Study of Aging and cancer datasets from the 10th round of the Finngen project. Replication analyses was performed with Cancer Association Consortium and Leo’s studies. Instrumental variables were analyzed using methods including the Wald ratio, inverse-variance weighted, MR-Egger, and weighted median. To ensure robustness, sensitivity analyses were performed using Cochrane’s Q, Egger’s intercept, MR-PRESSO, and leave-one-out methods. After meticulous analysis, we obtained levels of 3-hydroxyoleoylcarnitine, hexadecanedioate, tetradecanedioate, and carnitine C14 with robust causal associations with breast cancer, levels of 5alpha-androstan-3alpha,17beta-diol monosulfate (1), androstenediol (3beta,17beta) monosulfate (1), androsterone sulfate, and 5alpha-androstan-3beta,17beta-diol disulfate causal associations with endometrial cancer. The reverse analysis showed that breast, ovarian, and endometrial cancer and survival of breast and ovarian cancer were found to have causal relationships with 8, 5, 2, 6, and 3 metabolites, respectively. These insights underscore the potential roles of specific metabolites in the etiology of female cancers, providing new biomarkers for early detection, risk stratification, and disease progression monitoring. Further research could elucidate how these metabolites influence specific pathways in cancer development, offering theoretical foundations for prevention and treatment strategies.</p></div>\",\"PeriodicalId\":51106,\"journal\":{\"name\":\"Journal of Steroid Biochemistry and Molecular Biology\",\"volume\":\"243 \",\"pages\":\"Article 106584\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Steroid Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960076024001328\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Steroid Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960076024001328","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Associations between serum metabolites and female cancers: A bidirectional two-sample mendelian randomization study
Female cancers, especially breast, ovarian, cervical, and endometrial cancers, constitute a major threat to women's health worldwide. In view of the complex genetic background of cancers cannot be fully explained with current genetic information, we used a bidirectional two-sample mendelian randomization approach to explore the causal associations between serum metabolites and four major female cancers—breast, ovarian, cervical, and endometrial cancers. We analyzed the metabolites dataset from the Canadian Longitudinal Study of Aging and cancer datasets from the 10th round of the Finngen project. Replication analyses was performed with Cancer Association Consortium and Leo’s studies. Instrumental variables were analyzed using methods including the Wald ratio, inverse-variance weighted, MR-Egger, and weighted median. To ensure robustness, sensitivity analyses were performed using Cochrane’s Q, Egger’s intercept, MR-PRESSO, and leave-one-out methods. After meticulous analysis, we obtained levels of 3-hydroxyoleoylcarnitine, hexadecanedioate, tetradecanedioate, and carnitine C14 with robust causal associations with breast cancer, levels of 5alpha-androstan-3alpha,17beta-diol monosulfate (1), androstenediol (3beta,17beta) monosulfate (1), androsterone sulfate, and 5alpha-androstan-3beta,17beta-diol disulfate causal associations with endometrial cancer. The reverse analysis showed that breast, ovarian, and endometrial cancer and survival of breast and ovarian cancer were found to have causal relationships with 8, 5, 2, 6, and 3 metabolites, respectively. These insights underscore the potential roles of specific metabolites in the etiology of female cancers, providing new biomarkers for early detection, risk stratification, and disease progression monitoring. Further research could elucidate how these metabolites influence specific pathways in cancer development, offering theoretical foundations for prevention and treatment strategies.
期刊介绍:
The Journal of Steroid Biochemistry and Molecular Biology is devoted to new experimental and theoretical developments in areas related to steroids including vitamin D, lipids and their metabolomics. The Journal publishes a variety of contributions, including original articles, general and focused reviews, and rapid communications (brief articles of particular interest and clear novelty). Selected cutting-edge topics will be addressed in Special Issues managed by Guest Editors. Special Issues will contain both commissioned reviews and original research papers to provide comprehensive coverage of specific topics, and all submissions will undergo rigorous peer-review prior to publication.