树木的光谱任意性失败得很厉害

IF 1.2 1区 数学 Q1 MATHEMATICS
Shaun M. Fallat , H. Tracy Hall , Rupert H. Levene , Seth A. Meyer , Shahla Nasserasr , Polona Oblak , Helena Šmigoc
{"title":"树木的光谱任意性失败得很厉害","authors":"Shaun M. Fallat ,&nbsp;H. Tracy Hall ,&nbsp;Rupert H. Levene ,&nbsp;Seth A. Meyer ,&nbsp;Shahla Nasserasr ,&nbsp;Polona Oblak ,&nbsp;Helena Šmigoc","doi":"10.1016/j.jctb.2024.06.007","DOIUrl":null,"url":null,"abstract":"<div><p>Given a graph <em>G</em>, consider the family of real symmetric matrices with the property that the pattern of their nonzero off-diagonal entries corresponds to the edges of <em>G</em>. For the past 30 years a central problem has been to determine which spectra are realizable in this matrix class. Using combinatorial methods, we identify a family of graphs and multiplicity lists whose realizable spectra are highly restricted. In particular, we construct trees with multiplicity lists that require a unique spectrum, up to shifting and scaling. This represents the most extreme possible failure of spectral arbitrariness for a multiplicity list, and greatly extends all previously known instances of this phenomenon, in which only single linear constraints on the eigenvalues were observed.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 161-210"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral arbitrariness for trees fails spectacularly\",\"authors\":\"Shaun M. Fallat ,&nbsp;H. Tracy Hall ,&nbsp;Rupert H. Levene ,&nbsp;Seth A. Meyer ,&nbsp;Shahla Nasserasr ,&nbsp;Polona Oblak ,&nbsp;Helena Šmigoc\",\"doi\":\"10.1016/j.jctb.2024.06.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a graph <em>G</em>, consider the family of real symmetric matrices with the property that the pattern of their nonzero off-diagonal entries corresponds to the edges of <em>G</em>. For the past 30 years a central problem has been to determine which spectra are realizable in this matrix class. Using combinatorial methods, we identify a family of graphs and multiplicity lists whose realizable spectra are highly restricted. In particular, we construct trees with multiplicity lists that require a unique spectrum, up to shifting and scaling. This represents the most extreme possible failure of spectral arbitrariness for a multiplicity list, and greatly extends all previously known instances of this phenomenon, in which only single linear constraints on the eigenvalues were observed.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"169 \",\"pages\":\"Pages 161-210\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000583\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000583","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个图 G,考虑实对称矩阵族,其非零对角线项的模式对应于 G 的边。通过组合方法,我们确定了一系列图形和多重性列表,它们的可实现光谱受到了很大限制。特别是,我们构建的树与多重性列表需要唯一的频谱,直至移位和缩放。这代表了多重性列表频谱任意性可能出现的最极端故障,并大大扩展了之前已知的所有这种现象的实例,在这些实例中,只观察到对特征值的单一线性约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral arbitrariness for trees fails spectacularly

Given a graph G, consider the family of real symmetric matrices with the property that the pattern of their nonzero off-diagonal entries corresponds to the edges of G. For the past 30 years a central problem has been to determine which spectra are realizable in this matrix class. Using combinatorial methods, we identify a family of graphs and multiplicity lists whose realizable spectra are highly restricted. In particular, we construct trees with multiplicity lists that require a unique spectrum, up to shifting and scaling. This represents the most extreme possible failure of spectral arbitrariness for a multiplicity list, and greatly extends all previously known instances of this phenomenon, in which only single linear constraints on the eigenvalues were observed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信