Hong Deng , Facai Su , Ping Yuan , Baoyu Chen , Tingting An , Linhui Chen , Yingying An , Guorong Liu
{"title":"探索雷电放电电流与等离子体光谱之间的关系","authors":"Hong Deng , Facai Su , Ping Yuan , Baoyu Chen , Tingting An , Linhui Chen , Yingying An , Guorong Liu","doi":"10.1016/j.jastp.2024.106307","DOIUrl":null,"url":null,"abstract":"<div><p>Lightning return stroke discharge current is a key parameter being concerned in lightning protection design. Since the current of natural lightning is difficult to be directly measured, and the existing experimental methods cannot obtain the information of the current change along the channel, the correlation between the current intensity and the corresponding spectral characteristics makes it possible to investigate the current transmission characteristic. The high time resolution spectra of the whole channel outside the cloud for nine multi-return cloud-to-ground (CG) lightning discharges were captured by using a high time-resolved slit-less spectrograph, and the light radiation characteristics of the discharge plasma channel have been investigated. Based on plasma spectral diagnosis method, combined with the synchronous electric field change waveform caused by lightning, using the relationship between electric field variation amplitude and the corresponding discharge current, the dependence of spectral characteristics on discharge current intensity was analyzed. We found that the intensity of the ionic lines in the spectrum are positively correlated with the current intensity. Semi-empirical data fitting shown that for most of the lightning studied in this work, there is a good quadratic correlation between ionic lines intensity and peak current. The correlation between spectral characteristics and discharge current intensity depends on the radiation mechanism of spectral lines with different excitation energy. The intensity of the ionic lines in the spectrum can reflect the current intensity in more detail than the total luminous intensity.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"261 ","pages":"Article 106307"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the relationship between lightning discharge current and plasma spectrum\",\"authors\":\"Hong Deng , Facai Su , Ping Yuan , Baoyu Chen , Tingting An , Linhui Chen , Yingying An , Guorong Liu\",\"doi\":\"10.1016/j.jastp.2024.106307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lightning return stroke discharge current is a key parameter being concerned in lightning protection design. Since the current of natural lightning is difficult to be directly measured, and the existing experimental methods cannot obtain the information of the current change along the channel, the correlation between the current intensity and the corresponding spectral characteristics makes it possible to investigate the current transmission characteristic. The high time resolution spectra of the whole channel outside the cloud for nine multi-return cloud-to-ground (CG) lightning discharges were captured by using a high time-resolved slit-less spectrograph, and the light radiation characteristics of the discharge plasma channel have been investigated. Based on plasma spectral diagnosis method, combined with the synchronous electric field change waveform caused by lightning, using the relationship between electric field variation amplitude and the corresponding discharge current, the dependence of spectral characteristics on discharge current intensity was analyzed. We found that the intensity of the ionic lines in the spectrum are positively correlated with the current intensity. Semi-empirical data fitting shown that for most of the lightning studied in this work, there is a good quadratic correlation between ionic lines intensity and peak current. The correlation between spectral characteristics and discharge current intensity depends on the radiation mechanism of spectral lines with different excitation energy. The intensity of the ionic lines in the spectrum can reflect the current intensity in more detail than the total luminous intensity.</p></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":\"261 \",\"pages\":\"Article 106307\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624001354\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001354","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Exploring the relationship between lightning discharge current and plasma spectrum
Lightning return stroke discharge current is a key parameter being concerned in lightning protection design. Since the current of natural lightning is difficult to be directly measured, and the existing experimental methods cannot obtain the information of the current change along the channel, the correlation between the current intensity and the corresponding spectral characteristics makes it possible to investigate the current transmission characteristic. The high time resolution spectra of the whole channel outside the cloud for nine multi-return cloud-to-ground (CG) lightning discharges were captured by using a high time-resolved slit-less spectrograph, and the light radiation characteristics of the discharge plasma channel have been investigated. Based on plasma spectral diagnosis method, combined with the synchronous electric field change waveform caused by lightning, using the relationship between electric field variation amplitude and the corresponding discharge current, the dependence of spectral characteristics on discharge current intensity was analyzed. We found that the intensity of the ionic lines in the spectrum are positively correlated with the current intensity. Semi-empirical data fitting shown that for most of the lightning studied in this work, there is a good quadratic correlation between ionic lines intensity and peak current. The correlation between spectral characteristics and discharge current intensity depends on the radiation mechanism of spectral lines with different excitation energy. The intensity of the ionic lines in the spectrum can reflect the current intensity in more detail than the total luminous intensity.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.