{"title":"基于纳米颗粒的给药系统:治疗真菌性角膜炎的最新策略","authors":"Yu Xiao Guo , Yu Xi He","doi":"10.1016/j.colcom.2024.100794","DOIUrl":null,"url":null,"abstract":"<div><p>Fungal keratitis is a globally blinding eye disease caused by fungi, with more than 1.05 million cases diagnosed annually, mainly in Asia. It is the most common form of infectious keratitis, accounting for approximately 40–50% of microbial keratitis cases. The disease is difficult to treat and the prognosis is often poor. Conventional antimicrobial therapies, which are the mainstay of treatment, face problems of off-target toxicity, low bioavailability, and drug-resistant fungi. In recent years, novel drug delivery systems have emerged as a promising alternative. These systems improve drug stability, extend drug residence time, control drug release, target specific tissues and cells, and reduce toxic side effects. Nanoparticle-based drug delivery systems are particularly compelling. The aim of this paper is to elucidate the mechanisms and advances of nanoparticle-based drug delivery systems in antifungal therapy and to provide new perspectives on the treatment of fungal keratitis.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"61 ","pages":"Article 100794"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000293/pdfft?md5=631dff769754a6a6152ff572573f0f39&pid=1-s2.0-S2215038224000293-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanoparticle-based drug delivery systems: An updated strategy for treating fungal keratitis\",\"authors\":\"Yu Xiao Guo , Yu Xi He\",\"doi\":\"10.1016/j.colcom.2024.100794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fungal keratitis is a globally blinding eye disease caused by fungi, with more than 1.05 million cases diagnosed annually, mainly in Asia. It is the most common form of infectious keratitis, accounting for approximately 40–50% of microbial keratitis cases. The disease is difficult to treat and the prognosis is often poor. Conventional antimicrobial therapies, which are the mainstay of treatment, face problems of off-target toxicity, low bioavailability, and drug-resistant fungi. In recent years, novel drug delivery systems have emerged as a promising alternative. These systems improve drug stability, extend drug residence time, control drug release, target specific tissues and cells, and reduce toxic side effects. Nanoparticle-based drug delivery systems are particularly compelling. The aim of this paper is to elucidate the mechanisms and advances of nanoparticle-based drug delivery systems in antifungal therapy and to provide new perspectives on the treatment of fungal keratitis.</p></div>\",\"PeriodicalId\":10483,\"journal\":{\"name\":\"Colloid and Interface Science Communications\",\"volume\":\"61 \",\"pages\":\"Article 100794\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2215038224000293/pdfft?md5=631dff769754a6a6152ff572573f0f39&pid=1-s2.0-S2215038224000293-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Interface Science Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215038224000293\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038224000293","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Nanoparticle-based drug delivery systems: An updated strategy for treating fungal keratitis
Fungal keratitis is a globally blinding eye disease caused by fungi, with more than 1.05 million cases diagnosed annually, mainly in Asia. It is the most common form of infectious keratitis, accounting for approximately 40–50% of microbial keratitis cases. The disease is difficult to treat and the prognosis is often poor. Conventional antimicrobial therapies, which are the mainstay of treatment, face problems of off-target toxicity, low bioavailability, and drug-resistant fungi. In recent years, novel drug delivery systems have emerged as a promising alternative. These systems improve drug stability, extend drug residence time, control drug release, target specific tissues and cells, and reduce toxic side effects. Nanoparticle-based drug delivery systems are particularly compelling. The aim of this paper is to elucidate the mechanisms and advances of nanoparticle-based drug delivery systems in antifungal therapy and to provide new perspectives on the treatment of fungal keratitis.
期刊介绍:
Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.