Bernis Sütçübaşı , Ali Bayram , Barış Metin , Tamer Demiralp
{"title":"健康受试者接近-回避行为的神经相关性:低频重复经颅磁刺激(rTMS)对右侧背外侧前额叶皮层的影响。","authors":"Bernis Sütçübaşı , Ali Bayram , Barış Metin , Tamer Demiralp","doi":"10.1016/j.ijpsycho.2024.112392","DOIUrl":null,"url":null,"abstract":"<div><p>The dorsolateral prefrontal cortex (dlPFC) is implicated in top-down regulation of emotion, but the detailed network mechanisms require further elucidation. To investigate network-level functions of the dlPFC in emotion regulation, this study measured changes in task-based activation, resting-state and task-based functional connectivity (FC) patterns following suppression of dlPFC excitability by 1-Hz repetitive transcranial magnetic stimulation (rTMS). In a sham-controlled within-subject design, 1-Hz active or sham rTMS was applied to the right dlPFC of 19 healthy volunteers during two separate counterbalanced sessions. Following active and sham rTMS, functional magnetic resonance imaging (fMRI) was conducted in the resting state (rs-fMRI) and during approach–avoidance task responses to pictures with positive and negative emotional content (task-based fMRI). Activation and generalized psychophysiological interaction analyses were performed on task-based fMRI, and seed-based FC analysis was applied to rs-fMRI data. Task-based fMRI revealed greater and more lateralized activation in the right hemisphere during negative picture responses compared to positive picture responses. After active rTMS, greater activation was observed in the left middle prefrontal cortex compared to sham rTMS. Further, rTMS reduced response times and error rates in approach to positive pictures compared to negative pictures. Significant FC changes due to rTMS were observed predominantly in the frontoparietal network (FPN) and visual network (VN) during the task, and in the default mode network (DMN) and VN at rest. Suppression of right dlPFC activity by 1-Hz rTMS alters large-scale neural networks and modulates emotion, supporting potential applications for the treatment of mood disorders.</p></div>","PeriodicalId":54945,"journal":{"name":"International Journal of Psychophysiology","volume":"203 ","pages":"Article 112392"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural correlates of approach–avoidance behavior in healthy subjects: Effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) over the right dorsolateral prefrontal cortex\",\"authors\":\"Bernis Sütçübaşı , Ali Bayram , Barış Metin , Tamer Demiralp\",\"doi\":\"10.1016/j.ijpsycho.2024.112392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dorsolateral prefrontal cortex (dlPFC) is implicated in top-down regulation of emotion, but the detailed network mechanisms require further elucidation. To investigate network-level functions of the dlPFC in emotion regulation, this study measured changes in task-based activation, resting-state and task-based functional connectivity (FC) patterns following suppression of dlPFC excitability by 1-Hz repetitive transcranial magnetic stimulation (rTMS). In a sham-controlled within-subject design, 1-Hz active or sham rTMS was applied to the right dlPFC of 19 healthy volunteers during two separate counterbalanced sessions. Following active and sham rTMS, functional magnetic resonance imaging (fMRI) was conducted in the resting state (rs-fMRI) and during approach–avoidance task responses to pictures with positive and negative emotional content (task-based fMRI). Activation and generalized psychophysiological interaction analyses were performed on task-based fMRI, and seed-based FC analysis was applied to rs-fMRI data. Task-based fMRI revealed greater and more lateralized activation in the right hemisphere during negative picture responses compared to positive picture responses. After active rTMS, greater activation was observed in the left middle prefrontal cortex compared to sham rTMS. Further, rTMS reduced response times and error rates in approach to positive pictures compared to negative pictures. Significant FC changes due to rTMS were observed predominantly in the frontoparietal network (FPN) and visual network (VN) during the task, and in the default mode network (DMN) and VN at rest. Suppression of right dlPFC activity by 1-Hz rTMS alters large-scale neural networks and modulates emotion, supporting potential applications for the treatment of mood disorders.</p></div>\",\"PeriodicalId\":54945,\"journal\":{\"name\":\"International Journal of Psychophysiology\",\"volume\":\"203 \",\"pages\":\"Article 112392\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Psychophysiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167876024000965\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167876024000965","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Neural correlates of approach–avoidance behavior in healthy subjects: Effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) over the right dorsolateral prefrontal cortex
The dorsolateral prefrontal cortex (dlPFC) is implicated in top-down regulation of emotion, but the detailed network mechanisms require further elucidation. To investigate network-level functions of the dlPFC in emotion regulation, this study measured changes in task-based activation, resting-state and task-based functional connectivity (FC) patterns following suppression of dlPFC excitability by 1-Hz repetitive transcranial magnetic stimulation (rTMS). In a sham-controlled within-subject design, 1-Hz active or sham rTMS was applied to the right dlPFC of 19 healthy volunteers during two separate counterbalanced sessions. Following active and sham rTMS, functional magnetic resonance imaging (fMRI) was conducted in the resting state (rs-fMRI) and during approach–avoidance task responses to pictures with positive and negative emotional content (task-based fMRI). Activation and generalized psychophysiological interaction analyses were performed on task-based fMRI, and seed-based FC analysis was applied to rs-fMRI data. Task-based fMRI revealed greater and more lateralized activation in the right hemisphere during negative picture responses compared to positive picture responses. After active rTMS, greater activation was observed in the left middle prefrontal cortex compared to sham rTMS. Further, rTMS reduced response times and error rates in approach to positive pictures compared to negative pictures. Significant FC changes due to rTMS were observed predominantly in the frontoparietal network (FPN) and visual network (VN) during the task, and in the default mode network (DMN) and VN at rest. Suppression of right dlPFC activity by 1-Hz rTMS alters large-scale neural networks and modulates emotion, supporting potential applications for the treatment of mood disorders.
期刊介绍:
The International Journal of Psychophysiology is the official journal of the International Organization of Psychophysiology, and provides a respected forum for the publication of high quality original contributions on all aspects of psychophysiology. The journal is interdisciplinary and aims to integrate the neurosciences and behavioral sciences. Empirical, theoretical, and review articles are encouraged in the following areas:
• Cerebral psychophysiology: including functional brain mapping and neuroimaging with Event-Related Potentials (ERPs), Positron Emission Tomography (PET), Functional Magnetic Resonance Imaging (fMRI) and Electroencephalographic studies.
• Autonomic functions: including bilateral electrodermal activity, pupillometry and blood volume changes.
• Cardiovascular Psychophysiology:including studies of blood pressure, cardiac functioning and respiration.
• Somatic psychophysiology: including muscle activity, eye movements and eye blinks.