氯马斯汀能逆转脱髓鞘,改善青少年社交隔离小鼠的情感和社交障碍。

IF 3.3 3区 心理学 Q1 BEHAVIORAL SCIENCES
Dan Guo , Yuan Yao , Xiumin Liu , Ying Han
{"title":"氯马斯汀能逆转脱髓鞘,改善青少年社交隔离小鼠的情感和社交障碍。","authors":"Dan Guo ,&nbsp;Yuan Yao ,&nbsp;Xiumin Liu ,&nbsp;Ying Han","doi":"10.1016/j.pbb.2024.173824","DOIUrl":null,"url":null,"abstract":"<div><p>Adolescence is a critical period for social experience-dependent oligodendrocyte maturation and myelination. Adolescent stress predisposes to cause irreversible changes in brain structure and function with lasting effects on adulthood or beyond. However, the molecular mechanisms linking adolescent social isolation stress with emotional and social competence remain largely unknown. In our study, we found that social isolation during adolescence leads to anxiety-like behaviors, depression-like behaviors, impaired social memory and altered patterns of social ultrasonic vocalizations in mice. In addition, adolescent social isolation stress induces demyelination in the prefrontal cortex and hippocampus of mice, with decreased myelin-related gene expression and disrupted myelin structure. More importantly, clemastine was sufficient to rescue the impairment of emotional and social memory by promoting remyelination. These findings reveal the demyelination mechanism of emotional and social deficits caused by social isolation stress in adolescence, and provides potential therapeutic targets for treating stress-related mental disorders.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"242 ","pages":"Article 173824"},"PeriodicalIF":3.3000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clemastine improves emotional and social deficits in adolescent social isolation mice by reversing demyelination\",\"authors\":\"Dan Guo ,&nbsp;Yuan Yao ,&nbsp;Xiumin Liu ,&nbsp;Ying Han\",\"doi\":\"10.1016/j.pbb.2024.173824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adolescence is a critical period for social experience-dependent oligodendrocyte maturation and myelination. Adolescent stress predisposes to cause irreversible changes in brain structure and function with lasting effects on adulthood or beyond. However, the molecular mechanisms linking adolescent social isolation stress with emotional and social competence remain largely unknown. In our study, we found that social isolation during adolescence leads to anxiety-like behaviors, depression-like behaviors, impaired social memory and altered patterns of social ultrasonic vocalizations in mice. In addition, adolescent social isolation stress induces demyelination in the prefrontal cortex and hippocampus of mice, with decreased myelin-related gene expression and disrupted myelin structure. More importantly, clemastine was sufficient to rescue the impairment of emotional and social memory by promoting remyelination. These findings reveal the demyelination mechanism of emotional and social deficits caused by social isolation stress in adolescence, and provides potential therapeutic targets for treating stress-related mental disorders.</p></div>\",\"PeriodicalId\":19893,\"journal\":{\"name\":\"Pharmacology Biochemistry and Behavior\",\"volume\":\"242 \",\"pages\":\"Article 173824\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacology Biochemistry and Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0091305724001187\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091305724001187","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

青春期是依赖社会经验的少突胶质细胞成熟和髓鞘化的关键时期。青少年时期的压力容易导致大脑结构和功能发生不可逆转的变化,并对成年或成年后产生持久影响。然而,青少年社会隔离压力与情绪和社交能力之间的分子机制在很大程度上仍不为人知。在我们的研究中,我们发现青春期的社会隔离会导致小鼠的焦虑样行为、抑郁样行为、社会记忆受损和社会超声发声模式改变。此外,青春期社会隔离应激会诱导小鼠前额叶皮层和海马脱髓鞘,髓鞘相关基因表达减少,髓鞘结构被破坏。更重要的是,氯马斯汀足以通过促进再髓鞘化来挽救情感和社会记忆的损伤。这些发现揭示了青春期社会隔离应激导致情感和社交障碍的脱髓鞘机制,为治疗应激相关精神障碍提供了潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clemastine improves emotional and social deficits in adolescent social isolation mice by reversing demyelination

Adolescence is a critical period for social experience-dependent oligodendrocyte maturation and myelination. Adolescent stress predisposes to cause irreversible changes in brain structure and function with lasting effects on adulthood or beyond. However, the molecular mechanisms linking adolescent social isolation stress with emotional and social competence remain largely unknown. In our study, we found that social isolation during adolescence leads to anxiety-like behaviors, depression-like behaviors, impaired social memory and altered patterns of social ultrasonic vocalizations in mice. In addition, adolescent social isolation stress induces demyelination in the prefrontal cortex and hippocampus of mice, with decreased myelin-related gene expression and disrupted myelin structure. More importantly, clemastine was sufficient to rescue the impairment of emotional and social memory by promoting remyelination. These findings reveal the demyelination mechanism of emotional and social deficits caused by social isolation stress in adolescence, and provides potential therapeutic targets for treating stress-related mental disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
2.80%
发文量
122
审稿时长
38 days
期刊介绍: Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信