{"title":"地中海城市-农业流域地表水的农药污染模式(突尼斯北部比泽特泻湖 Wadi Guenniche)。","authors":"Olivier Grünberger, Radhouane Hamdi, Manon Lagacherie, Hanene Chaabane","doi":"10.1080/03601234.2024.2375905","DOIUrl":null,"url":null,"abstract":"<p><p>Two years of monthly sampling and hydrological monitoring were performed at the outlet of a Mediterranean watershed in northern Tunisia to determine the contents of 469 pesticide active ingredients and metabolites in water and evaluate their behavior. Wadi Guenniche is a tributary of the Bizerte coastal lagoon, with a watershed area of 86 km<sup>2</sup>, which exhibits pluvial cereal, legume, and orchid cultivation and irrigated market gardening. Twenty-nine pesticide active ingredients and 2 metabolites were detected in water. Twenty-four pesticide active ingredients were authorized for use in Tunisia. Among them, 14 had never been mentioned in previous farmer surveys. Five herbicides and their metabolites were the most frequently detected: aminomethylphosphonic acid (AMPA) (100%), glyphosate (94%), simazine (94%), 2,4-D (70%), and deisopropylatrazine (DIA) (47%). The detection frequency and concentration range suggested that the phytosanitary pressure and resulting water contamination are close to those on the northern Mediterranean shore. These results, in addition to characterizing the pollution state, emphasized the need for additional studies on the use and fate of pesticides on the southern shore of the Mediterranean Sea, particularly in Tunisia.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pesticide contamination pattern of surface water in an urban-agricultural mediterranean watershed (Wadi Guenniche, Bizerte Lagoon, Northern Tunisia).\",\"authors\":\"Olivier Grünberger, Radhouane Hamdi, Manon Lagacherie, Hanene Chaabane\",\"doi\":\"10.1080/03601234.2024.2375905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two years of monthly sampling and hydrological monitoring were performed at the outlet of a Mediterranean watershed in northern Tunisia to determine the contents of 469 pesticide active ingredients and metabolites in water and evaluate their behavior. Wadi Guenniche is a tributary of the Bizerte coastal lagoon, with a watershed area of 86 km<sup>2</sup>, which exhibits pluvial cereal, legume, and orchid cultivation and irrigated market gardening. Twenty-nine pesticide active ingredients and 2 metabolites were detected in water. Twenty-four pesticide active ingredients were authorized for use in Tunisia. Among them, 14 had never been mentioned in previous farmer surveys. Five herbicides and their metabolites were the most frequently detected: aminomethylphosphonic acid (AMPA) (100%), glyphosate (94%), simazine (94%), 2,4-D (70%), and deisopropylatrazine (DIA) (47%). The detection frequency and concentration range suggested that the phytosanitary pressure and resulting water contamination are close to those on the northern Mediterranean shore. These results, in addition to characterizing the pollution state, emphasized the need for additional studies on the use and fate of pesticides on the southern shore of the Mediterranean Sea, particularly in Tunisia.</p>\",\"PeriodicalId\":15720,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03601234.2024.2375905\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03601234.2024.2375905","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Pesticide contamination pattern of surface water in an urban-agricultural mediterranean watershed (Wadi Guenniche, Bizerte Lagoon, Northern Tunisia).
Two years of monthly sampling and hydrological monitoring were performed at the outlet of a Mediterranean watershed in northern Tunisia to determine the contents of 469 pesticide active ingredients and metabolites in water and evaluate their behavior. Wadi Guenniche is a tributary of the Bizerte coastal lagoon, with a watershed area of 86 km2, which exhibits pluvial cereal, legume, and orchid cultivation and irrigated market gardening. Twenty-nine pesticide active ingredients and 2 metabolites were detected in water. Twenty-four pesticide active ingredients were authorized for use in Tunisia. Among them, 14 had never been mentioned in previous farmer surveys. Five herbicides and their metabolites were the most frequently detected: aminomethylphosphonic acid (AMPA) (100%), glyphosate (94%), simazine (94%), 2,4-D (70%), and deisopropylatrazine (DIA) (47%). The detection frequency and concentration range suggested that the phytosanitary pressure and resulting water contamination are close to those on the northern Mediterranean shore. These results, in addition to characterizing the pollution state, emphasized the need for additional studies on the use and fate of pesticides on the southern shore of the Mediterranean Sea, particularly in Tunisia.