Máté Vass, Anna J Székely, Ulla Carlsson-Graner, Johan Wikner, Agneta Andersson
{"title":"微核生物群落的凝聚加强了群落的稳定性并提高了多样性。","authors":"Máté Vass, Anna J Székely, Ulla Carlsson-Graner, Johan Wikner, Agneta Andersson","doi":"10.1093/femsec/fiae100","DOIUrl":null,"url":null,"abstract":"<p><p>Mixing of entire microbial communities represents a frequent, yet understudied phenomenon. Here, we mimicked estuarine condition in a microcosm experiment by mixing a freshwater river community with a brackish sea community and assessed the effects of both environmental and community coalescences induced by varying mixing processes on microeukaryotic communities. Signs of shifted community composition of coalesced communities towards the sea parent community suggest asymmetrical community coalescence outcome, which, in addition, was generally less impacted by environmental coalescence. Community stability, inferred from community cohesion, differed among river and sea parent communities, and increased following coalescence treatments. Generally, community coalescence increased alpha diversity and promoted competition from the introduction (or emergence) of additional (or rare) species. These competitive interactions in turn had community stabilizing effect as evidenced by the increased proportion of negative cohesion. The fate of microeukaryotes was influenced by mixing ratios and frequencies (i.e. one-time versus repeated coalescence). Namely, diatoms were negatively impacted by coalescence, while fungi, ciliates, and cercozoans were promoted to varying extents, depending on the mixing ratios of the parent communities. Our study suggests that the predictability of coalescence outcomes was greater when the sea parent community dominated the final community, and this predictability was further enhanced when communities collided repeatedly.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287207/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microeukaryote community coalescence strengthens community stability and elevates diversity.\",\"authors\":\"Máté Vass, Anna J Székely, Ulla Carlsson-Graner, Johan Wikner, Agneta Andersson\",\"doi\":\"10.1093/femsec/fiae100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mixing of entire microbial communities represents a frequent, yet understudied phenomenon. Here, we mimicked estuarine condition in a microcosm experiment by mixing a freshwater river community with a brackish sea community and assessed the effects of both environmental and community coalescences induced by varying mixing processes on microeukaryotic communities. Signs of shifted community composition of coalesced communities towards the sea parent community suggest asymmetrical community coalescence outcome, which, in addition, was generally less impacted by environmental coalescence. Community stability, inferred from community cohesion, differed among river and sea parent communities, and increased following coalescence treatments. Generally, community coalescence increased alpha diversity and promoted competition from the introduction (or emergence) of additional (or rare) species. These competitive interactions in turn had community stabilizing effect as evidenced by the increased proportion of negative cohesion. The fate of microeukaryotes was influenced by mixing ratios and frequencies (i.e. one-time versus repeated coalescence). Namely, diatoms were negatively impacted by coalescence, while fungi, ciliates, and cercozoans were promoted to varying extents, depending on the mixing ratios of the parent communities. Our study suggests that the predictability of coalescence outcomes was greater when the sea parent community dominated the final community, and this predictability was further enhanced when communities collided repeatedly.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287207/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiae100\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae100","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Microeukaryote community coalescence strengthens community stability and elevates diversity.
Mixing of entire microbial communities represents a frequent, yet understudied phenomenon. Here, we mimicked estuarine condition in a microcosm experiment by mixing a freshwater river community with a brackish sea community and assessed the effects of both environmental and community coalescences induced by varying mixing processes on microeukaryotic communities. Signs of shifted community composition of coalesced communities towards the sea parent community suggest asymmetrical community coalescence outcome, which, in addition, was generally less impacted by environmental coalescence. Community stability, inferred from community cohesion, differed among river and sea parent communities, and increased following coalescence treatments. Generally, community coalescence increased alpha diversity and promoted competition from the introduction (or emergence) of additional (or rare) species. These competitive interactions in turn had community stabilizing effect as evidenced by the increased proportion of negative cohesion. The fate of microeukaryotes was influenced by mixing ratios and frequencies (i.e. one-time versus repeated coalescence). Namely, diatoms were negatively impacted by coalescence, while fungi, ciliates, and cercozoans were promoted to varying extents, depending on the mixing ratios of the parent communities. Our study suggests that the predictability of coalescence outcomes was greater when the sea parent community dominated the final community, and this predictability was further enhanced when communities collided repeatedly.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms