{"title":"利用细菌群落划分对乙酰氨基酚生物降解动力学和代谢组学。","authors":"Bhavana Pandey, Suresh Kumar Dubey","doi":"10.1007/s10532-024-10090-5","DOIUrl":null,"url":null,"abstract":"<div><p>Acetaminophen [N-(4-hydroxyphenyl) acetamide, APAP] is an extensively and frequently consumed over-the-counter analgesic and antiphlogistic medication. It is being regarded as an emerging pollutant due to its continuous increment in the environment instigating inimical impacts on humans and the ecosystem. Considering its wide prevalence in the environment, there is an immense need of appropriate methods for the removal of APAP. The present study indulged screening and isolation of APAP degrading bacterial strains from pharmaceuticals-contaminated sites, followed by their molecular characterization via 16S rRNA sequencing. The phylogenetic analyses assigned the isolates to the genera <i>Pseudomonas, Bacillus, Paracoccus, Agrobacterium, Brucella, Escherichia, and Enterobacter</i> based on genetic relatedness. The efficacy of these strains in batch cultures tested through High-performance Liquid Chromatography (HPLC) revealed <i>Paracoccus</i> sp. and <i>Enterobacter</i> sp. as the most promising bacterial isolates degrading up to 88.96 and 85.92%, respectively of 300 mg L<sup>−1</sup> of APAP within 8 days of incubation. Michaelis–Menten kinetics model parameters also elucidated the high degradation potential of these isolates. The major metabolites identified through FTIR and GC–MS analyses were 4-aminophenol, hydroquinone, and 3-hydroxy-2,4-hexadienedioic. Therefore, the outcomes of this comprehensive investigation will be of paramount significance in formulating strategies for the bioremediation of acetaminophen-contaminated sites through a natural augmentation process via native bacterial strains.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 6","pages":"951 - 967"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delineating acetaminophen biodegradation kinetics and metabolomics using bacterial community\",\"authors\":\"Bhavana Pandey, Suresh Kumar Dubey\",\"doi\":\"10.1007/s10532-024-10090-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acetaminophen [N-(4-hydroxyphenyl) acetamide, APAP] is an extensively and frequently consumed over-the-counter analgesic and antiphlogistic medication. It is being regarded as an emerging pollutant due to its continuous increment in the environment instigating inimical impacts on humans and the ecosystem. Considering its wide prevalence in the environment, there is an immense need of appropriate methods for the removal of APAP. The present study indulged screening and isolation of APAP degrading bacterial strains from pharmaceuticals-contaminated sites, followed by their molecular characterization via 16S rRNA sequencing. The phylogenetic analyses assigned the isolates to the genera <i>Pseudomonas, Bacillus, Paracoccus, Agrobacterium, Brucella, Escherichia, and Enterobacter</i> based on genetic relatedness. The efficacy of these strains in batch cultures tested through High-performance Liquid Chromatography (HPLC) revealed <i>Paracoccus</i> sp. and <i>Enterobacter</i> sp. as the most promising bacterial isolates degrading up to 88.96 and 85.92%, respectively of 300 mg L<sup>−1</sup> of APAP within 8 days of incubation. Michaelis–Menten kinetics model parameters also elucidated the high degradation potential of these isolates. The major metabolites identified through FTIR and GC–MS analyses were 4-aminophenol, hydroquinone, and 3-hydroxy-2,4-hexadienedioic. Therefore, the outcomes of this comprehensive investigation will be of paramount significance in formulating strategies for the bioremediation of acetaminophen-contaminated sites through a natural augmentation process via native bacterial strains.</p></div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"35 6\",\"pages\":\"951 - 967\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-024-10090-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-024-10090-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Delineating acetaminophen biodegradation kinetics and metabolomics using bacterial community
Acetaminophen [N-(4-hydroxyphenyl) acetamide, APAP] is an extensively and frequently consumed over-the-counter analgesic and antiphlogistic medication. It is being regarded as an emerging pollutant due to its continuous increment in the environment instigating inimical impacts on humans and the ecosystem. Considering its wide prevalence in the environment, there is an immense need of appropriate methods for the removal of APAP. The present study indulged screening and isolation of APAP degrading bacterial strains from pharmaceuticals-contaminated sites, followed by their molecular characterization via 16S rRNA sequencing. The phylogenetic analyses assigned the isolates to the genera Pseudomonas, Bacillus, Paracoccus, Agrobacterium, Brucella, Escherichia, and Enterobacter based on genetic relatedness. The efficacy of these strains in batch cultures tested through High-performance Liquid Chromatography (HPLC) revealed Paracoccus sp. and Enterobacter sp. as the most promising bacterial isolates degrading up to 88.96 and 85.92%, respectively of 300 mg L−1 of APAP within 8 days of incubation. Michaelis–Menten kinetics model parameters also elucidated the high degradation potential of these isolates. The major metabolites identified through FTIR and GC–MS analyses were 4-aminophenol, hydroquinone, and 3-hydroxy-2,4-hexadienedioic. Therefore, the outcomes of this comprehensive investigation will be of paramount significance in formulating strategies for the bioremediation of acetaminophen-contaminated sites through a natural augmentation process via native bacterial strains.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.