基于一体化纸质传感器的智能手机辅助便携式现场检测系统,用于检测蔬菜和水果中的有机磷农药:以 2,2-二氯乙烯基二甲基磷酸酯为模型。

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Chengcheng Jin , Shuang Yang , Junlei Zheng, Fang Chai, Miaomiao Tian
{"title":"基于一体化纸质传感器的智能手机辅助便携式现场检测系统,用于检测蔬菜和水果中的有机磷农药:以 2,2-二氯乙烯基二甲基磷酸酯为模型。","authors":"Chengcheng Jin ,&nbsp;Shuang Yang ,&nbsp;Junlei Zheng,&nbsp;Fang Chai,&nbsp;Miaomiao Tian","doi":"10.1016/j.foodchem.2024.140369","DOIUrl":null,"url":null,"abstract":"<div><p>The improper use of organophosphate pesticides (OPs) can lead to residue posing a serious threat to human health and environment. Therefore, the development of a simple, portable, and sensitive detection method is crucial. Herein, a bioenzyme-nanozyme-chromogen all-in-one paper-based sensor was synthesized. Initially, the Ce/Zr-MOF with peroxidase-like activity was grown on filter paper (FP) using in-situ solvent thermal method, resulting in Ce/Zr-MOF@FP. Subsequently, the AChE-ChO-TMB system was immobilized onto Ce/Zr-MOF@FP using biocompatible gelatin, which enhanced cascade catalysis efficiency through the proximity effect. Based on the inhibition principle of OPs on AChE, we integrated this sensor with Python-based image recognition algorithm to achieve detection of OPs. Using 2,2-dichlorovinyl dimethyl phosphate (DDVP) as a model of OPs, it has good detection performance with a detection limit of 0.32 ng mL<sup>−1</sup> and a recovery rate range of 95–107%. The potential for on-site detection of DDVP residues in vegetables and fruit samples is highly promising.</p></div>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A smartphone-assisted portable on-site detection system for organophosphorus pesticides in vegetables and fruits based on all-in-one paper-based sensors: 2,2-Dichlorovinyl dimethyl phosphate as a model\",\"authors\":\"Chengcheng Jin ,&nbsp;Shuang Yang ,&nbsp;Junlei Zheng,&nbsp;Fang Chai,&nbsp;Miaomiao Tian\",\"doi\":\"10.1016/j.foodchem.2024.140369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The improper use of organophosphate pesticides (OPs) can lead to residue posing a serious threat to human health and environment. Therefore, the development of a simple, portable, and sensitive detection method is crucial. Herein, a bioenzyme-nanozyme-chromogen all-in-one paper-based sensor was synthesized. Initially, the Ce/Zr-MOF with peroxidase-like activity was grown on filter paper (FP) using in-situ solvent thermal method, resulting in Ce/Zr-MOF@FP. Subsequently, the AChE-ChO-TMB system was immobilized onto Ce/Zr-MOF@FP using biocompatible gelatin, which enhanced cascade catalysis efficiency through the proximity effect. Based on the inhibition principle of OPs on AChE, we integrated this sensor with Python-based image recognition algorithm to achieve detection of OPs. Using 2,2-dichlorovinyl dimethyl phosphate (DDVP) as a model of OPs, it has good detection performance with a detection limit of 0.32 ng mL<sup>−1</sup> and a recovery rate range of 95–107%. The potential for on-site detection of DDVP residues in vegetables and fruit samples is highly promising.</p></div>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814624020193\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624020193","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

有机磷农药(OPs)的不当使用会导致残留,对人类健康和环境构成严重威胁。因此,开发一种简单、便携、灵敏的检测方法至关重要。本文合成了一种生物酶-纳米酶-色原一体化纸基传感器。首先,利用原位溶剂热法在滤纸(FP)上生长具有过氧化物酶样活性的 Ce/Zr-MOF,得到 Ce/Zr-MOF@FP。随后,利用生物相容性明胶将 AChE-ChO-TMB 系统固定在 Ce/Zr-MOF@FP 上,通过邻近效应提高了级联催化效率。根据 OPs 对 AChE 的抑制原理,我们将该传感器与基于 Python 的图像识别算法相结合,实现了对 OPs 的检测。以 2,2-二氯乙烯基二甲基磷酸酯(DDVP)为 OPs 模型,它具有良好的检测性能,检测限为 0.32 ng mL-1,回收率范围为 95-107%。现场检测蔬菜和水果样品中的 DDVP 残留的潜力非常可观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A smartphone-assisted portable on-site detection system for organophosphorus pesticides in vegetables and fruits based on all-in-one paper-based sensors: 2,2-Dichlorovinyl dimethyl phosphate as a model

The improper use of organophosphate pesticides (OPs) can lead to residue posing a serious threat to human health and environment. Therefore, the development of a simple, portable, and sensitive detection method is crucial. Herein, a bioenzyme-nanozyme-chromogen all-in-one paper-based sensor was synthesized. Initially, the Ce/Zr-MOF with peroxidase-like activity was grown on filter paper (FP) using in-situ solvent thermal method, resulting in Ce/Zr-MOF@FP. Subsequently, the AChE-ChO-TMB system was immobilized onto Ce/Zr-MOF@FP using biocompatible gelatin, which enhanced cascade catalysis efficiency through the proximity effect. Based on the inhibition principle of OPs on AChE, we integrated this sensor with Python-based image recognition algorithm to achieve detection of OPs. Using 2,2-dichlorovinyl dimethyl phosphate (DDVP) as a model of OPs, it has good detection performance with a detection limit of 0.32 ng mL−1 and a recovery rate range of 95–107%. The potential for on-site detection of DDVP residues in vegetables and fruit samples is highly promising.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信