固体氧化物电解池熵工程驱动的高效二氧化碳电解稳健阴极

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Meiting Yang, Shuai Liu, Xinran Shen, Ruijia Xu, Jiangyuan Feng, Zhixin Luo, Guangming Yang, Yu Liu, Ran Ran, Wei Zhou, Zongping Shao
{"title":"固体氧化物电解池熵工程驱动的高效二氧化碳电解稳健阴极","authors":"Meiting Yang, Shuai Liu, Xinran Shen, Ruijia Xu, Jiangyuan Feng, Zhixin Luo, Guangming Yang, Yu Liu, Ran Ran, Wei Zhou, Zongping Shao","doi":"10.1021/acsenergylett.4c01447","DOIUrl":null,"url":null,"abstract":"Herein, we introduce an innovative approach of entropy engineering to design high-performance and durable electrodes. A series of perovskite oxides with varying configurational entropy (<i>S</i><sub>config</sub>) based on Pr<sub>1/2</sub>Ba<sub>1/2</sub>FeO<sub>3−δ</sub> (PBF) matrix are synthesized, and their physicochemical properties and electrochemical performances in CO<sub>2</sub> reduction reaction process are explored via manipulating <i>S</i><sub>config</sub>. Notably, a high-entropy perovskite, Pr<sub>1/6</sub>La<sub>1/6</sub>Sm<sub>1/6</sub>Ba<sub>1/6</sub>Sr<sub>1/6</sub>Ca<sub>1/6</sub>FeO<sub>3−δ</sub> (PLSBSCF), with an <i>S</i><sub>config</sub> of 1.79 R, exhibits significant lattice distortion due to homogeneous distributed A-site elements. It demonstrates a high concentration of oxygen vacancies, good CO<sub>2</sub> adsorption capability, and rapid O<sup>2–</sup>/e<sup>–</sup> conductions. Compared to bare PBF perovskite, PLSBSCF offers a greater number of active sites for CO<sub>2</sub>RR, and the corresponding cell achieves remarkably high current densities of 2.86 A cm<sup>–2</sup> at 850 °C (1.5 V) during direct CO<sub>2</sub> electrolysis, while maintaining good thermal stability and operational durability. Density Functional Theory calculations also confirm the good CO<sub>2</sub> reduction activity of PLSBSCF perovskite.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"6 1","pages":""},"PeriodicalIF":18.2000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Cathode for Efficient CO2 Electrolysis Driven by Entropy Engineering in Solid Oxide Electrolysis Cells\",\"authors\":\"Meiting Yang, Shuai Liu, Xinran Shen, Ruijia Xu, Jiangyuan Feng, Zhixin Luo, Guangming Yang, Yu Liu, Ran Ran, Wei Zhou, Zongping Shao\",\"doi\":\"10.1021/acsenergylett.4c01447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we introduce an innovative approach of entropy engineering to design high-performance and durable electrodes. A series of perovskite oxides with varying configurational entropy (<i>S</i><sub>config</sub>) based on Pr<sub>1/2</sub>Ba<sub>1/2</sub>FeO<sub>3−δ</sub> (PBF) matrix are synthesized, and their physicochemical properties and electrochemical performances in CO<sub>2</sub> reduction reaction process are explored via manipulating <i>S</i><sub>config</sub>. Notably, a high-entropy perovskite, Pr<sub>1/6</sub>La<sub>1/6</sub>Sm<sub>1/6</sub>Ba<sub>1/6</sub>Sr<sub>1/6</sub>Ca<sub>1/6</sub>FeO<sub>3−δ</sub> (PLSBSCF), with an <i>S</i><sub>config</sub> of 1.79 R, exhibits significant lattice distortion due to homogeneous distributed A-site elements. It demonstrates a high concentration of oxygen vacancies, good CO<sub>2</sub> adsorption capability, and rapid O<sup>2–</sup>/e<sup>–</sup> conductions. Compared to bare PBF perovskite, PLSBSCF offers a greater number of active sites for CO<sub>2</sub>RR, and the corresponding cell achieves remarkably high current densities of 2.86 A cm<sup>–2</sup> at 850 °C (1.5 V) during direct CO<sub>2</sub> electrolysis, while maintaining good thermal stability and operational durability. Density Functional Theory calculations also confirm the good CO<sub>2</sub> reduction activity of PLSBSCF perovskite.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.4c01447\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c01447","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们引入了一种创新的熵工程方法来设计高性能和耐用的电极。我们以Pr1/2Ba1/2FeO3-δ(PBF)为基质,合成了一系列具有不同构型熵(Sconfig)的包晶氧化物,并通过操纵Sconfig探索了它们在二氧化碳还原反应过程中的物理化学性质和电化学性能。值得注意的是,Sconfig 值为 1.79 R 的高熵包晶 Pr1/6La1/6Sm1/6Ba1/6Sr1/6Ca1/6FeO3-δ (PLSBSCF)由于均匀分布的 A 位元素而表现出明显的晶格畸变。它具有高浓度的氧空位、良好的二氧化碳吸附能力和快速的 O2-/e- 传导能力。与裸 PBF 包晶相比,PLSBSCF 为 CO2RR 提供了更多的活性位点,相应的电池在 850 ℃(1.5 V)直接电解 CO2 时可达到 2.86 A cm-2 的显著高电流密度,同时保持了良好的热稳定性和运行耐久性。密度泛函理论计算也证实了 PLSBSCF 包晶具有良好的二氧化碳还原活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust Cathode for Efficient CO2 Electrolysis Driven by Entropy Engineering in Solid Oxide Electrolysis Cells

Robust Cathode for Efficient CO2 Electrolysis Driven by Entropy Engineering in Solid Oxide Electrolysis Cells
Herein, we introduce an innovative approach of entropy engineering to design high-performance and durable electrodes. A series of perovskite oxides with varying configurational entropy (Sconfig) based on Pr1/2Ba1/2FeO3−δ (PBF) matrix are synthesized, and their physicochemical properties and electrochemical performances in CO2 reduction reaction process are explored via manipulating Sconfig. Notably, a high-entropy perovskite, Pr1/6La1/6Sm1/6Ba1/6Sr1/6Ca1/6FeO3−δ (PLSBSCF), with an Sconfig of 1.79 R, exhibits significant lattice distortion due to homogeneous distributed A-site elements. It demonstrates a high concentration of oxygen vacancies, good CO2 adsorption capability, and rapid O2–/e conductions. Compared to bare PBF perovskite, PLSBSCF offers a greater number of active sites for CO2RR, and the corresponding cell achieves remarkably high current densities of 2.86 A cm–2 at 850 °C (1.5 V) during direct CO2 electrolysis, while maintaining good thermal stability and operational durability. Density Functional Theory calculations also confirm the good CO2 reduction activity of PLSBSCF perovskite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信