考虑竞争对手相互作用的电动耐力赛车模型预测控制策略

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Jorn van Kampen;Mauro Moriggi;Francesco Braghin;Mauro Salazar
{"title":"考虑竞争对手相互作用的电动耐力赛车模型预测控制策略","authors":"Jorn van Kampen;Mauro Moriggi;Francesco Braghin;Mauro Salazar","doi":"10.1109/LCSYS.2024.3417174","DOIUrl":null,"url":null,"abstract":"This letter presents model predictive control strategies for battery electric endurance race cars accounting for interactions with the competitors. In particular, we devise an optimization framework capturing the impact of the actions of the ego vehicle when interacting with competitors in a probabilistic fashion, jointly accounting for the optimal pit stop decision making, the charge times and the driving style in the course of the race. We showcase our method for a simulated 1 h endurance race at the Zandvoort circuit, using real-life data from a previous event. Our results show that optimizing both the race strategy and the decision making during the race is very important, resulting in a significant 21 s advantage over an always overtake approach, whilst revealing the competitiveness of e-race cars w.r.t. conventional ones.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Predictive Control Strategies for Electric Endurance Race Cars Accounting for Competitors’ Interactions\",\"authors\":\"Jorn van Kampen;Mauro Moriggi;Francesco Braghin;Mauro Salazar\",\"doi\":\"10.1109/LCSYS.2024.3417174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents model predictive control strategies for battery electric endurance race cars accounting for interactions with the competitors. In particular, we devise an optimization framework capturing the impact of the actions of the ego vehicle when interacting with competitors in a probabilistic fashion, jointly accounting for the optimal pit stop decision making, the charge times and the driving style in the course of the race. We showcase our method for a simulated 1 h endurance race at the Zandvoort circuit, using real-life data from a previous event. Our results show that optimizing both the race strategy and the decision making during the race is very important, resulting in a significant 21 s advantage over an always overtake approach, whilst revealing the competitiveness of e-race cars w.r.t. conventional ones.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10565843/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10565843/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

这封信介绍了电池电动耐力赛车的模型预测控制策略,其中考虑到了与竞争对手之间的相互作用。特别是,我们设计了一个优化框架,以概率方式捕捉自我车辆在与竞争对手互动时的行为影响,并在比赛过程中共同考虑最佳维修站决策、充电时间和驾驶风格。我们利用以前赛事的真实数据,在赞德福特赛道模拟了一场 1 小时的耐力赛,展示了我们的方法。我们的结果表明,优化比赛策略和比赛过程中的决策制定非常重要,与始终超车的方法相比,我们的方法能显著提高 21 秒的优势,同时揭示了电子赛车与传统赛车相比的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Predictive Control Strategies for Electric Endurance Race Cars Accounting for Competitors’ Interactions
This letter presents model predictive control strategies for battery electric endurance race cars accounting for interactions with the competitors. In particular, we devise an optimization framework capturing the impact of the actions of the ego vehicle when interacting with competitors in a probabilistic fashion, jointly accounting for the optimal pit stop decision making, the charge times and the driving style in the course of the race. We showcase our method for a simulated 1 h endurance race at the Zandvoort circuit, using real-life data from a previous event. Our results show that optimizing both the race strategy and the decision making during the race is very important, resulting in a significant 21 s advantage over an always overtake approach, whilst revealing the competitiveness of e-race cars w.r.t. conventional ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信