论凸函数之和的可能最小值集合

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Moslem Zamani;François Glineur;Julien M. Hendrickx
{"title":"论凸函数之和的可能最小值集合","authors":"Moslem Zamani;François Glineur;Julien M. Hendrickx","doi":"10.1109/LCSYS.2024.3414378","DOIUrl":null,"url":null,"abstract":"Consider a sum of convex functions, where the only information known about each individual summand is the location of a minimizer. In this letter, we give an exact characterization of the set of possible minimizers of the sum. Our results cover several types of assumptions on the summands, such as smoothness or strong convexity. Our main tool is the use of necessary and sufficient conditions for interpolating the considered function classes, which leads to shorter and more direct proofs in comparison with previous work. We also address the setting where each summand minimizer is assumed to lie in a unit ball, and prove a tight bound on the norm of any minimizer of the sum.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Set of Possible Minimizers of a Sum of Convex Functions\",\"authors\":\"Moslem Zamani;François Glineur;Julien M. Hendrickx\",\"doi\":\"10.1109/LCSYS.2024.3414378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a sum of convex functions, where the only information known about each individual summand is the location of a minimizer. In this letter, we give an exact characterization of the set of possible minimizers of the sum. Our results cover several types of assumptions on the summands, such as smoothness or strong convexity. Our main tool is the use of necessary and sufficient conditions for interpolating the considered function classes, which leads to shorter and more direct proofs in comparison with previous work. We also address the setting where each summand minimizer is assumed to lie in a unit ball, and prove a tight bound on the norm of any minimizer of the sum.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10556735/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10556735/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个凸函数的和,其中关于每个单独和的唯一已知信息是最小值的位置。在这封信中,我们给出了和的可能最小值集合的精确特征。我们的结果涵盖了和的几种假设类型,如光滑性或强凸性。我们的主要工具是使用所考虑函数类插值的必要条件和充分条件,与之前的工作相比,这使得证明更简短、更直接。我们还讨论了假定每个和的最小化都位于单位球中的问题,并证明了和的任何最小化的规范的严格约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Set of Possible Minimizers of a Sum of Convex Functions
Consider a sum of convex functions, where the only information known about each individual summand is the location of a minimizer. In this letter, we give an exact characterization of the set of possible minimizers of the sum. Our results cover several types of assumptions on the summands, such as smoothness or strong convexity. Our main tool is the use of necessary and sufficient conditions for interpolating the considered function classes, which leads to shorter and more direct proofs in comparison with previous work. We also address the setting where each summand minimizer is assumed to lie in a unit ball, and prove a tight bound on the norm of any minimizer of the sum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信