Yanling Li, Zita Oravecz, Linying Ji, Sy-Miin Chow
{"title":"因子得分多重估算:在纵向设计中处理各项目同时缺失的实用方法。","authors":"Yanling Li, Zita Oravecz, Linying Ji, Sy-Miin Chow","doi":"10.1080/00273171.2024.2371816","DOIUrl":null,"url":null,"abstract":"<p><p>Missingness in intensive longitudinal data triggered by latent factors constitute one type of nonignorable missingness that can generate simultaneous missingness across multiple items on each measurement occasion. To address this issue, we propose a multiple imputation (MI) strategy called MI-FS, which incorporates factor scores, lag/lead variables, and missing data indicators into the imputation model. In the context of process factor analysis (PFA), we conducted a Monte Carlo simulation study to compare the performance of MI-FS to listwise deletion (LD), MI with manifest variables (MI-MV, which implements MI on both dependent variables and covariates), and partial MI with MVs (PMI-MV, which implements MI on covariates and handles missing dependent variables <i>via</i> full-information maximum likelihood) under different conditions. Across conditions, we found MI-based methods overall outperformed the LD; the MI-FS approach yielded lower root mean square errors (RMSEs) and higher coverage rates for auto-regression (AR) parameters compared to MI-MV; and the PMI-MV and MI-MV approaches yielded higher coverage rates for most parameters except AR parameters compared to MI-FS. These approaches were also compared using an empirical example investigating the relationships between negative affect and perceived stress over time. Recommendations on when and how to incorporate factor scores into MI processes were discussed.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-29"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Imputation with Factor Scores: A Practical Approach for Handling Simultaneous Missingness Across Items in Longitudinal Designs.\",\"authors\":\"Yanling Li, Zita Oravecz, Linying Ji, Sy-Miin Chow\",\"doi\":\"10.1080/00273171.2024.2371816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Missingness in intensive longitudinal data triggered by latent factors constitute one type of nonignorable missingness that can generate simultaneous missingness across multiple items on each measurement occasion. To address this issue, we propose a multiple imputation (MI) strategy called MI-FS, which incorporates factor scores, lag/lead variables, and missing data indicators into the imputation model. In the context of process factor analysis (PFA), we conducted a Monte Carlo simulation study to compare the performance of MI-FS to listwise deletion (LD), MI with manifest variables (MI-MV, which implements MI on both dependent variables and covariates), and partial MI with MVs (PMI-MV, which implements MI on covariates and handles missing dependent variables <i>via</i> full-information maximum likelihood) under different conditions. Across conditions, we found MI-based methods overall outperformed the LD; the MI-FS approach yielded lower root mean square errors (RMSEs) and higher coverage rates for auto-regression (AR) parameters compared to MI-MV; and the PMI-MV and MI-MV approaches yielded higher coverage rates for most parameters except AR parameters compared to MI-FS. These approaches were also compared using an empirical example investigating the relationships between negative affect and perceived stress over time. Recommendations on when and how to incorporate factor scores into MI processes were discussed.</p>\",\"PeriodicalId\":53155,\"journal\":{\"name\":\"Multivariate Behavioral Research\",\"volume\":\" \",\"pages\":\"1-29\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multivariate Behavioral Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/00273171.2024.2371816\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2024.2371816","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multiple Imputation with Factor Scores: A Practical Approach for Handling Simultaneous Missingness Across Items in Longitudinal Designs.
Missingness in intensive longitudinal data triggered by latent factors constitute one type of nonignorable missingness that can generate simultaneous missingness across multiple items on each measurement occasion. To address this issue, we propose a multiple imputation (MI) strategy called MI-FS, which incorporates factor scores, lag/lead variables, and missing data indicators into the imputation model. In the context of process factor analysis (PFA), we conducted a Monte Carlo simulation study to compare the performance of MI-FS to listwise deletion (LD), MI with manifest variables (MI-MV, which implements MI on both dependent variables and covariates), and partial MI with MVs (PMI-MV, which implements MI on covariates and handles missing dependent variables via full-information maximum likelihood) under different conditions. Across conditions, we found MI-based methods overall outperformed the LD; the MI-FS approach yielded lower root mean square errors (RMSEs) and higher coverage rates for auto-regression (AR) parameters compared to MI-MV; and the PMI-MV and MI-MV approaches yielded higher coverage rates for most parameters except AR parameters compared to MI-FS. These approaches were also compared using an empirical example investigating the relationships between negative affect and perceived stress over time. Recommendations on when and how to incorporate factor scores into MI processes were discussed.
期刊介绍:
Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.