{"title":"维生素 B6 与糖尿病及其在抵消高级糖化终产物方面的作用。","authors":"F Vernì","doi":"10.1016/bs.vh.2024.02.005","DOIUrl":null,"url":null,"abstract":"<p><p>Naturally occurring forms of vitamin B6 include six interconvertible water-soluble compounds: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM), and their respective monophosphorylated derivatives (PNP, PLP, and PMP). PLP is the catalytically active form which works as a cofactor in approximately 200 reactions that regulate the metabolism of glucose, lipids, amino acids, DNA, and neurotransmitters. Most of vitamers can counteract the formation of reactive oxygen species and the advanced glycation end-products (AGEs) which are toxic compounds that accumulate in diabetic patients due to prolonged hyperglycemia. Vitamin B6 levels have been inversely associate with diabetes, while vitamin B6 supplementation reduces diabetes onset and its vascular complications. The mechanisms at the basis of the relation between vitamin B6 and diabetes onset are still not completely clarified. In contrast more evidence indicates that vitamin B6 can protect from diabetes complications through its role as scavenger of AGEs. It has been demonstrated that in diabetes AGEs can destroy the functionality of macromolecules such as protein, lipids, and DNA, thus producing tissue damage that result in vascular diseases. AGEs can be in part also responsible for the increased cancer risk associated with diabetes. In this chapter the relationship between vitamin B6, diabetes and AGEs will be discussed by showing the acquired knowledge and questions that are still open.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"125 ","pages":"401-438"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vitamin B6 and diabetes and its role in counteracting advanced glycation end products.\",\"authors\":\"F Vernì\",\"doi\":\"10.1016/bs.vh.2024.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Naturally occurring forms of vitamin B6 include six interconvertible water-soluble compounds: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM), and their respective monophosphorylated derivatives (PNP, PLP, and PMP). PLP is the catalytically active form which works as a cofactor in approximately 200 reactions that regulate the metabolism of glucose, lipids, amino acids, DNA, and neurotransmitters. Most of vitamers can counteract the formation of reactive oxygen species and the advanced glycation end-products (AGEs) which are toxic compounds that accumulate in diabetic patients due to prolonged hyperglycemia. Vitamin B6 levels have been inversely associate with diabetes, while vitamin B6 supplementation reduces diabetes onset and its vascular complications. The mechanisms at the basis of the relation between vitamin B6 and diabetes onset are still not completely clarified. In contrast more evidence indicates that vitamin B6 can protect from diabetes complications through its role as scavenger of AGEs. It has been demonstrated that in diabetes AGEs can destroy the functionality of macromolecules such as protein, lipids, and DNA, thus producing tissue damage that result in vascular diseases. AGEs can be in part also responsible for the increased cancer risk associated with diabetes. In this chapter the relationship between vitamin B6, diabetes and AGEs will be discussed by showing the acquired knowledge and questions that are still open.</p>\",\"PeriodicalId\":51209,\"journal\":{\"name\":\"Vitamins and Hormones\",\"volume\":\"125 \",\"pages\":\"401-438\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vitamins and Hormones\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.vh.2024.02.005\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vitamins and Hormones","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.vh.2024.02.005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Vitamin B6 and diabetes and its role in counteracting advanced glycation end products.
Naturally occurring forms of vitamin B6 include six interconvertible water-soluble compounds: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM), and their respective monophosphorylated derivatives (PNP, PLP, and PMP). PLP is the catalytically active form which works as a cofactor in approximately 200 reactions that regulate the metabolism of glucose, lipids, amino acids, DNA, and neurotransmitters. Most of vitamers can counteract the formation of reactive oxygen species and the advanced glycation end-products (AGEs) which are toxic compounds that accumulate in diabetic patients due to prolonged hyperglycemia. Vitamin B6 levels have been inversely associate with diabetes, while vitamin B6 supplementation reduces diabetes onset and its vascular complications. The mechanisms at the basis of the relation between vitamin B6 and diabetes onset are still not completely clarified. In contrast more evidence indicates that vitamin B6 can protect from diabetes complications through its role as scavenger of AGEs. It has been demonstrated that in diabetes AGEs can destroy the functionality of macromolecules such as protein, lipids, and DNA, thus producing tissue damage that result in vascular diseases. AGEs can be in part also responsible for the increased cancer risk associated with diabetes. In this chapter the relationship between vitamin B6, diabetes and AGEs will be discussed by showing the acquired knowledge and questions that are still open.
期刊介绍:
First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press. In the early days of the serial, the subjects of vitamins and hormones were quite distinct. The Editorial Board now reflects expertise in the field of hormone action, vitamin action, X-ray crystal structure, physiology, and enzyme mechanisms. Vitamins and Hormones continues to publish cutting-edge reviews of interest to endocrinologists, biochemists, nutritionists, pharmacologists, cell biologists, and molecular biologists. Others interested in the structure and function of biologically active molecules like hormones and vitamins will, as always, turn to this series for comprehensive reviews by leading contributors to this and related disciplines.