识别 TikTok 上的电子烟内容:使用 BERTopic Modeling 方法。

IF 3 2区 医学 Q2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Juhan Lee, Rachel R Ouellette, Dhiraj Murthy, Ben Pretzer, Tanvi Anand, Grace Kong
{"title":"识别 TikTok 上的电子烟内容:使用 BERTopic Modeling 方法。","authors":"Juhan Lee, Rachel R Ouellette, Dhiraj Murthy, Ben Pretzer, Tanvi Anand, Grace Kong","doi":"10.1093/ntr/ntae171","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The use of hashtags is a common way to promote e-cigarette content on social media. Analysis of hashtags may provide insight into e-cigarette promotion on social media. However, the examination of text data is complicated by the voluminous amount of social media data. This study used machine learning approaches (ie, Bidirectional Encoder Representations from Transformers [BERT] topic modeling) to identify e-cigarette content on TikTok.</p><p><strong>Aims and methods: </strong>We used 13 unique hashtags related to e-cigarettes (eg, #vape) for data collection. The final analytic sample included 12 573 TikTok posts. To identify the best fitting number of topic clusters, we used both quantitative (ie, coherence test) and qualitative approaches (ie, researchers checked the relevance of text from each topic). We, then, grouped and characterized clustered text for each theme.</p><p><strong>Results: </strong>We evaluated that N = 18 was the ideal number of topic clusters. The 9 overarching themes were identified: Social media and TikTok-related features (N = 4; \"duet,\" \"viral\"), Vape shops and brands (N = 3; \"store\"), Vape tricks (N = 3; \"ripsaw\"), Modified use of e-cigarettes (N = 1; \"coil,\" \"wire\"), Vaping and girls (N = 1; \"girl\"), Vape flavors (N = 1; \"flavors\"), Vape and cigarettes (N = 1; \"smoke\"), Vape identities and communities (N = 1; \"community\"), and Non-English language (N = 3; Romanian and Spanish).</p><p><strong>Conclusions: </strong>This study used a machine learning method, BERTopic modeling, to successfully identify relevant themes on TikTok. This method can inform future social media research examining other tobacco products, and tobacco regulatory policies such as monitoring of e-cigarette marketing on social media.</p><p><strong>Implications: </strong>This study can inform future social media research examining other tobacco products, and tobacco regulatory policies such as monitoring of e-cigarette marketing on social media.</p>","PeriodicalId":19241,"journal":{"name":"Nicotine & Tobacco Research","volume":" ","pages":"91-96"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying E-cigarette Content on TikTok: Using a BERTopic Modeling Approach.\",\"authors\":\"Juhan Lee, Rachel R Ouellette, Dhiraj Murthy, Ben Pretzer, Tanvi Anand, Grace Kong\",\"doi\":\"10.1093/ntr/ntae171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The use of hashtags is a common way to promote e-cigarette content on social media. Analysis of hashtags may provide insight into e-cigarette promotion on social media. However, the examination of text data is complicated by the voluminous amount of social media data. This study used machine learning approaches (ie, Bidirectional Encoder Representations from Transformers [BERT] topic modeling) to identify e-cigarette content on TikTok.</p><p><strong>Aims and methods: </strong>We used 13 unique hashtags related to e-cigarettes (eg, #vape) for data collection. The final analytic sample included 12 573 TikTok posts. To identify the best fitting number of topic clusters, we used both quantitative (ie, coherence test) and qualitative approaches (ie, researchers checked the relevance of text from each topic). We, then, grouped and characterized clustered text for each theme.</p><p><strong>Results: </strong>We evaluated that N = 18 was the ideal number of topic clusters. The 9 overarching themes were identified: Social media and TikTok-related features (N = 4; \\\"duet,\\\" \\\"viral\\\"), Vape shops and brands (N = 3; \\\"store\\\"), Vape tricks (N = 3; \\\"ripsaw\\\"), Modified use of e-cigarettes (N = 1; \\\"coil,\\\" \\\"wire\\\"), Vaping and girls (N = 1; \\\"girl\\\"), Vape flavors (N = 1; \\\"flavors\\\"), Vape and cigarettes (N = 1; \\\"smoke\\\"), Vape identities and communities (N = 1; \\\"community\\\"), and Non-English language (N = 3; Romanian and Spanish).</p><p><strong>Conclusions: </strong>This study used a machine learning method, BERTopic modeling, to successfully identify relevant themes on TikTok. This method can inform future social media research examining other tobacco products, and tobacco regulatory policies such as monitoring of e-cigarette marketing on social media.</p><p><strong>Implications: </strong>This study can inform future social media research examining other tobacco products, and tobacco regulatory policies such as monitoring of e-cigarette marketing on social media.</p>\",\"PeriodicalId\":19241,\"journal\":{\"name\":\"Nicotine & Tobacco Research\",\"volume\":\" \",\"pages\":\"91-96\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nicotine & Tobacco Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ntr/ntae171\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nicotine & Tobacco Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ntr/ntae171","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

导言:使用标签是在社交媒体上推广电子烟内容的一种常见方式。对标签的分析可能有助于深入了解电子烟在社交媒体上的推广情况。然而,由于社交媒体数据量巨大,文本数据的检查变得复杂。本研究使用机器学习方法(即来自变换器的双向编码器表示[BERT]主题建模)来识别 TikTok 上的电子烟内容:我们使用 13 个与电子烟相关的独特标签(如 #vape)进行数据收集。最终的分析样本包括 12,573 篇 TikTok 帖子。为了确定最合适的话题集群数量,我们采用了定量(即一致性测试)和定性方法(即研究人员检查每个话题文本的相关性)。然后,我们根据每个主题对聚类文本进行分组和定性:我们评估认为,N=18 是理想的主题群数量。我们确定了 9 个首要主题:社交媒体和 TikTok 相关功能(N=4;"二重奏"、"病毒")、Vape 商店和品牌(N=3;"商店")、Vape 技巧(N=3;"ripsaw")、电子烟的改良使用(N=1;"线圈"、"线")、Vape 和女孩(N=1;"女孩")、电子烟口味(N=1;"口味")、电子烟和香烟(N=1;"烟")、电子烟身份和社区(N=1;"社区")以及非英语语言(N=3;罗马尼亚语和西班牙语)。结论本研究使用机器学习方法--BERTopic 模型--成功识别了 TikTok 上的相关主题。这种方法可以为今后研究其他烟草产品的社交媒体研究和烟草监管政策(如监控社交媒体上的电子烟营销)提供参考:本研究可为今后研究其他烟草产品和烟草监管政策(如监控社交媒体上的电子烟营销)的社交媒体研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying E-cigarette Content on TikTok: Using a BERTopic Modeling Approach.

Introduction: The use of hashtags is a common way to promote e-cigarette content on social media. Analysis of hashtags may provide insight into e-cigarette promotion on social media. However, the examination of text data is complicated by the voluminous amount of social media data. This study used machine learning approaches (ie, Bidirectional Encoder Representations from Transformers [BERT] topic modeling) to identify e-cigarette content on TikTok.

Aims and methods: We used 13 unique hashtags related to e-cigarettes (eg, #vape) for data collection. The final analytic sample included 12 573 TikTok posts. To identify the best fitting number of topic clusters, we used both quantitative (ie, coherence test) and qualitative approaches (ie, researchers checked the relevance of text from each topic). We, then, grouped and characterized clustered text for each theme.

Results: We evaluated that N = 18 was the ideal number of topic clusters. The 9 overarching themes were identified: Social media and TikTok-related features (N = 4; "duet," "viral"), Vape shops and brands (N = 3; "store"), Vape tricks (N = 3; "ripsaw"), Modified use of e-cigarettes (N = 1; "coil," "wire"), Vaping and girls (N = 1; "girl"), Vape flavors (N = 1; "flavors"), Vape and cigarettes (N = 1; "smoke"), Vape identities and communities (N = 1; "community"), and Non-English language (N = 3; Romanian and Spanish).

Conclusions: This study used a machine learning method, BERTopic modeling, to successfully identify relevant themes on TikTok. This method can inform future social media research examining other tobacco products, and tobacco regulatory policies such as monitoring of e-cigarette marketing on social media.

Implications: This study can inform future social media research examining other tobacco products, and tobacco regulatory policies such as monitoring of e-cigarette marketing on social media.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nicotine & Tobacco Research
Nicotine & Tobacco Research 医学-公共卫生、环境卫生与职业卫生
CiteScore
8.10
自引率
10.60%
发文量
268
审稿时长
3-8 weeks
期刊介绍: Nicotine & Tobacco Research is one of the world''s few peer-reviewed journals devoted exclusively to the study of nicotine and tobacco. It aims to provide a forum for empirical findings, critical reviews, and conceptual papers on the many aspects of nicotine and tobacco, including research from the biobehavioral, neurobiological, molecular biologic, epidemiological, prevention, and treatment arenas. Along with manuscripts from each of the areas mentioned above, the editors encourage submissions that are integrative in nature and that cross traditional disciplinary boundaries. The journal is sponsored by the Society for Research on Nicotine and Tobacco (SRNT). It publishes twelve times a year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信