{"title":"前瞻性评估人工智能增强型心电图算法的新方法。","authors":"","doi":"10.1016/j.jelectrocard.2024.06.046","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Significant strides will be made in the field of computerized electrocardiology through the development of artificial intelligence (AI)-enhanced ECG (AI-ECG) algorithms. Yet, the scientific discourse has primarily relied upon on retrospective analyses for deriving and externally validating AI-ECG classification algorithms, an approach that fails to fully judge their real-world effectiveness or reveal potential unintended consequences. Prospective trials and analyses of AI-ECG algorithms will be crucial for assessing real-world diagnostic scenarios and understanding their practical utility and degree influence they confer onto clinicians. However, conducting such studies is challenging due to their resource-intensive nature and associated technical and logistical hurdles. To overcome these challenges, we propose an innovative approach to assess AI-ECG algorithms using a virtual testing environment. This strategy can yield critical insights into the practical utility and clinical implications of novel AI-ECG algorithms. Moreover, such an approach can enable an assessment of the influence of AI-ECG algorithms have their users. Herein, we outline a proposed </span>randomized control trial for evaluating the diagnostic efficacy of new AI-ECG algorithm(s) specifically designed to differentiate between </span>wide complex tachycardias<span> into ventricular tachycardia and supraventricular wide complex tachycardia.</span></p></div>","PeriodicalId":15606,"journal":{"name":"Journal of electrocardiology","volume":"86 ","pages":"Article 153756"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel way to prospectively evaluate of AI-enhanced ECG algorithms\",\"authors\":\"\",\"doi\":\"10.1016/j.jelectrocard.2024.06.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Significant strides will be made in the field of computerized electrocardiology through the development of artificial intelligence (AI)-enhanced ECG (AI-ECG) algorithms. Yet, the scientific discourse has primarily relied upon on retrospective analyses for deriving and externally validating AI-ECG classification algorithms, an approach that fails to fully judge their real-world effectiveness or reveal potential unintended consequences. Prospective trials and analyses of AI-ECG algorithms will be crucial for assessing real-world diagnostic scenarios and understanding their practical utility and degree influence they confer onto clinicians. However, conducting such studies is challenging due to their resource-intensive nature and associated technical and logistical hurdles. To overcome these challenges, we propose an innovative approach to assess AI-ECG algorithms using a virtual testing environment. This strategy can yield critical insights into the practical utility and clinical implications of novel AI-ECG algorithms. Moreover, such an approach can enable an assessment of the influence of AI-ECG algorithms have their users. Herein, we outline a proposed </span>randomized control trial for evaluating the diagnostic efficacy of new AI-ECG algorithm(s) specifically designed to differentiate between </span>wide complex tachycardias<span> into ventricular tachycardia and supraventricular wide complex tachycardia.</span></p></div>\",\"PeriodicalId\":15606,\"journal\":{\"name\":\"Journal of electrocardiology\",\"volume\":\"86 \",\"pages\":\"Article 153756\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electrocardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022073624002206\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electrocardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022073624002206","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
A novel way to prospectively evaluate of AI-enhanced ECG algorithms
Significant strides will be made in the field of computerized electrocardiology through the development of artificial intelligence (AI)-enhanced ECG (AI-ECG) algorithms. Yet, the scientific discourse has primarily relied upon on retrospective analyses for deriving and externally validating AI-ECG classification algorithms, an approach that fails to fully judge their real-world effectiveness or reveal potential unintended consequences. Prospective trials and analyses of AI-ECG algorithms will be crucial for assessing real-world diagnostic scenarios and understanding their practical utility and degree influence they confer onto clinicians. However, conducting such studies is challenging due to their resource-intensive nature and associated technical and logistical hurdles. To overcome these challenges, we propose an innovative approach to assess AI-ECG algorithms using a virtual testing environment. This strategy can yield critical insights into the practical utility and clinical implications of novel AI-ECG algorithms. Moreover, such an approach can enable an assessment of the influence of AI-ECG algorithms have their users. Herein, we outline a proposed randomized control trial for evaluating the diagnostic efficacy of new AI-ECG algorithm(s) specifically designed to differentiate between wide complex tachycardias into ventricular tachycardia and supraventricular wide complex tachycardia.
期刊介绍:
The Journal of Electrocardiology is devoted exclusively to clinical and experimental studies of the electrical activities of the heart. It seeks to contribute significantly to the accuracy of diagnosis and prognosis and the effective treatment, prevention, or delay of heart disease. Editorial contents include electrocardiography, vectorcardiography, arrhythmias, membrane action potential, cardiac pacing, monitoring defibrillation, instrumentation, drug effects, and computer applications.