D W Goldman, L A Gifford, T Marotti, C H Koo, E J Goetzl
{"title":"人白三烯B4多形核白细胞受体的分子和细胞特性。","authors":"D W Goldman, L A Gifford, T Marotti, C H Koo, E J Goetzl","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The distinctive characteristics of human polymorphonuclear (PMN) leukocyte receptors for leukotriene B4 (LTB4) have been elucidated by studies of binding of [3H]LTB4, the structure of protein constituents of the receptors isolated from plasma membranes, and the effects of antireceptor antibodies. A high-affinity class of 4400 receptors with a KD of 0.4 nM mediates chemotaxis and increased adherence of PMN leukocytes, whereas a low-affinity class of 270,000 receptors with a KD of 61 nM mediates the release of lysosomal enzymes and increases in oxidative metabolism. The low-affinity receptors are composed of a 60,000-dalton protein-binding unit. The high-affinity receptors are composed of the same binding unit in association with a 40,000-dalton guanine nucleotide-binding protein. That antireceptor antibodies as well as LTB4 distinguish the two classes of receptors with different functional consequences suggests the possibility of unique approaches to the regulation of leukocyte function at the receptor level.</p>","PeriodicalId":12183,"journal":{"name":"Federation proceedings","volume":"46 1","pages":"200-3"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular and cellular properties of human polymorphonuclear leukocyte receptors for leukotriene B4.\",\"authors\":\"D W Goldman, L A Gifford, T Marotti, C H Koo, E J Goetzl\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The distinctive characteristics of human polymorphonuclear (PMN) leukocyte receptors for leukotriene B4 (LTB4) have been elucidated by studies of binding of [3H]LTB4, the structure of protein constituents of the receptors isolated from plasma membranes, and the effects of antireceptor antibodies. A high-affinity class of 4400 receptors with a KD of 0.4 nM mediates chemotaxis and increased adherence of PMN leukocytes, whereas a low-affinity class of 270,000 receptors with a KD of 61 nM mediates the release of lysosomal enzymes and increases in oxidative metabolism. The low-affinity receptors are composed of a 60,000-dalton protein-binding unit. The high-affinity receptors are composed of the same binding unit in association with a 40,000-dalton guanine nucleotide-binding protein. That antireceptor antibodies as well as LTB4 distinguish the two classes of receptors with different functional consequences suggests the possibility of unique approaches to the regulation of leukocyte function at the receptor level.</p>\",\"PeriodicalId\":12183,\"journal\":{\"name\":\"Federation proceedings\",\"volume\":\"46 1\",\"pages\":\"200-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Federation proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Federation proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular and cellular properties of human polymorphonuclear leukocyte receptors for leukotriene B4.
The distinctive characteristics of human polymorphonuclear (PMN) leukocyte receptors for leukotriene B4 (LTB4) have been elucidated by studies of binding of [3H]LTB4, the structure of protein constituents of the receptors isolated from plasma membranes, and the effects of antireceptor antibodies. A high-affinity class of 4400 receptors with a KD of 0.4 nM mediates chemotaxis and increased adherence of PMN leukocytes, whereas a low-affinity class of 270,000 receptors with a KD of 61 nM mediates the release of lysosomal enzymes and increases in oxidative metabolism. The low-affinity receptors are composed of a 60,000-dalton protein-binding unit. The high-affinity receptors are composed of the same binding unit in association with a 40,000-dalton guanine nucleotide-binding protein. That antireceptor antibodies as well as LTB4 distinguish the two classes of receptors with different functional consequences suggests the possibility of unique approaches to the regulation of leukocyte function at the receptor level.