{"title":"用于结直肠癌治疗的姜黄素-黄柏纳米载体凝胶MA/SilMA水凝胶。","authors":"","doi":"10.1016/j.ejpb.2024.114409","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a novel approach was employed to develop a therapeutic system for colorectal cancer treatment. Specifically, a GelMA/SilMA hydrogel loaded with curcumin-shellac nanoparticles (Cur@Lac NPs) was created. A microfluidic swirl mixer was utilized to formulate stable Cur@Lac NPs, ensuring their consistent and effective encapsulation. The pH-specific release of curcumin from the NPs demonstrated their potential for colon cancer treatment. By carefully regulating the ratio of GelMA (gelatin methacrylate) and SilMA (silk fibroin methacrylate), a GelMA/SilMA dual network hydrogel was generated, offering controlled release and degradation capabilities. The incorporation of SilMA notably enhanced the mechanical properties of the dual network matrix, improving compression resistance and mitigating deformation. This mechanical improvement is crucial for maintaining the structural integrity of the hydrogel during in vivo applications. In comparison to the direct incubation of curcumin, the strategy of encapsulating curcumin into NPs and embedding them within the GelMA/SilMA hydrogel resulted in more controlled release mechanisms. This controlled release was achieved through the disintegration of the NPs and the swelling and degradation of the hydrogel matrix. The encapsulating strategy also demonstrated enhanced cellular uptake of curcumin, leveraging the advantages of both NPs and in-situ hydrogel injection. This combination ensures a more efficient and sustained delivery of the therapeutic agent directly to the tumor site. Overall, this approach holds significant promise as a smart drug delivery system, potentially improving the efficacy of colorectal cancer treatments by providing targeted, controlled, and sustained drug release with enhanced mechanical stability and biocompatibility.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curcumin-shellac nanoparticle-loaded GelMA/SilMA hydrogel for colorectal cancer therapy\",\"authors\":\"\",\"doi\":\"10.1016/j.ejpb.2024.114409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a novel approach was employed to develop a therapeutic system for colorectal cancer treatment. Specifically, a GelMA/SilMA hydrogel loaded with curcumin-shellac nanoparticles (Cur@Lac NPs) was created. A microfluidic swirl mixer was utilized to formulate stable Cur@Lac NPs, ensuring their consistent and effective encapsulation. The pH-specific release of curcumin from the NPs demonstrated their potential for colon cancer treatment. By carefully regulating the ratio of GelMA (gelatin methacrylate) and SilMA (silk fibroin methacrylate), a GelMA/SilMA dual network hydrogel was generated, offering controlled release and degradation capabilities. The incorporation of SilMA notably enhanced the mechanical properties of the dual network matrix, improving compression resistance and mitigating deformation. This mechanical improvement is crucial for maintaining the structural integrity of the hydrogel during in vivo applications. In comparison to the direct incubation of curcumin, the strategy of encapsulating curcumin into NPs and embedding them within the GelMA/SilMA hydrogel resulted in more controlled release mechanisms. This controlled release was achieved through the disintegration of the NPs and the swelling and degradation of the hydrogel matrix. The encapsulating strategy also demonstrated enhanced cellular uptake of curcumin, leveraging the advantages of both NPs and in-situ hydrogel injection. This combination ensures a more efficient and sustained delivery of the therapeutic agent directly to the tumor site. Overall, this approach holds significant promise as a smart drug delivery system, potentially improving the efficacy of colorectal cancer treatments by providing targeted, controlled, and sustained drug release with enhanced mechanical stability and biocompatibility.</p></div>\",\"PeriodicalId\":12024,\"journal\":{\"name\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939641124002352\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124002352","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Curcumin-shellac nanoparticle-loaded GelMA/SilMA hydrogel for colorectal cancer therapy
In this study, a novel approach was employed to develop a therapeutic system for colorectal cancer treatment. Specifically, a GelMA/SilMA hydrogel loaded with curcumin-shellac nanoparticles (Cur@Lac NPs) was created. A microfluidic swirl mixer was utilized to formulate stable Cur@Lac NPs, ensuring their consistent and effective encapsulation. The pH-specific release of curcumin from the NPs demonstrated their potential for colon cancer treatment. By carefully regulating the ratio of GelMA (gelatin methacrylate) and SilMA (silk fibroin methacrylate), a GelMA/SilMA dual network hydrogel was generated, offering controlled release and degradation capabilities. The incorporation of SilMA notably enhanced the mechanical properties of the dual network matrix, improving compression resistance and mitigating deformation. This mechanical improvement is crucial for maintaining the structural integrity of the hydrogel during in vivo applications. In comparison to the direct incubation of curcumin, the strategy of encapsulating curcumin into NPs and embedding them within the GelMA/SilMA hydrogel resulted in more controlled release mechanisms. This controlled release was achieved through the disintegration of the NPs and the swelling and degradation of the hydrogel matrix. The encapsulating strategy also demonstrated enhanced cellular uptake of curcumin, leveraging the advantages of both NPs and in-situ hydrogel injection. This combination ensures a more efficient and sustained delivery of the therapeutic agent directly to the tumor site. Overall, this approach holds significant promise as a smart drug delivery system, potentially improving the efficacy of colorectal cancer treatments by providing targeted, controlled, and sustained drug release with enhanced mechanical stability and biocompatibility.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.