用于结直肠癌治疗的姜黄素-黄柏纳米载体凝胶MA/SilMA水凝胶。

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY
{"title":"用于结直肠癌治疗的姜黄素-黄柏纳米载体凝胶MA/SilMA水凝胶。","authors":"","doi":"10.1016/j.ejpb.2024.114409","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a novel approach was employed to develop a therapeutic system for colorectal cancer treatment. Specifically, a GelMA/SilMA hydrogel loaded with curcumin-shellac nanoparticles (Cur@Lac NPs) was created. A microfluidic swirl mixer was utilized to formulate stable Cur@Lac NPs, ensuring their consistent and effective encapsulation. The pH-specific release of curcumin from the NPs demonstrated their potential for colon cancer treatment. By carefully regulating the ratio of GelMA (gelatin methacrylate) and SilMA (silk fibroin methacrylate), a GelMA/SilMA dual network hydrogel was generated, offering controlled release and degradation capabilities. The incorporation of SilMA notably enhanced the mechanical properties of the dual network matrix, improving compression resistance and mitigating deformation. This mechanical improvement is crucial for maintaining the structural integrity of the hydrogel during in vivo applications. In comparison to the direct incubation of curcumin, the strategy of encapsulating curcumin into NPs and embedding them within the GelMA/SilMA hydrogel resulted in more controlled release mechanisms. This controlled release was achieved through the disintegration of the NPs and the swelling and degradation of the hydrogel matrix. The encapsulating strategy also demonstrated enhanced cellular uptake of curcumin, leveraging the advantages of both NPs and in-situ hydrogel injection. This combination ensures a more efficient and sustained delivery of the therapeutic agent directly to the tumor site. Overall, this approach holds significant promise as a smart drug delivery system, potentially improving the efficacy of colorectal cancer treatments by providing targeted, controlled, and sustained drug release with enhanced mechanical stability and biocompatibility.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curcumin-shellac nanoparticle-loaded GelMA/SilMA hydrogel for colorectal cancer therapy\",\"authors\":\"\",\"doi\":\"10.1016/j.ejpb.2024.114409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a novel approach was employed to develop a therapeutic system for colorectal cancer treatment. Specifically, a GelMA/SilMA hydrogel loaded with curcumin-shellac nanoparticles (Cur@Lac NPs) was created. A microfluidic swirl mixer was utilized to formulate stable Cur@Lac NPs, ensuring their consistent and effective encapsulation. The pH-specific release of curcumin from the NPs demonstrated their potential for colon cancer treatment. By carefully regulating the ratio of GelMA (gelatin methacrylate) and SilMA (silk fibroin methacrylate), a GelMA/SilMA dual network hydrogel was generated, offering controlled release and degradation capabilities. The incorporation of SilMA notably enhanced the mechanical properties of the dual network matrix, improving compression resistance and mitigating deformation. This mechanical improvement is crucial for maintaining the structural integrity of the hydrogel during in vivo applications. In comparison to the direct incubation of curcumin, the strategy of encapsulating curcumin into NPs and embedding them within the GelMA/SilMA hydrogel resulted in more controlled release mechanisms. This controlled release was achieved through the disintegration of the NPs and the swelling and degradation of the hydrogel matrix. The encapsulating strategy also demonstrated enhanced cellular uptake of curcumin, leveraging the advantages of both NPs and in-situ hydrogel injection. This combination ensures a more efficient and sustained delivery of the therapeutic agent directly to the tumor site. Overall, this approach holds significant promise as a smart drug delivery system, potentially improving the efficacy of colorectal cancer treatments by providing targeted, controlled, and sustained drug release with enhanced mechanical stability and biocompatibility.</p></div>\",\"PeriodicalId\":12024,\"journal\":{\"name\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939641124002352\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124002352","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用了一种新方法来开发结直肠癌治疗系统。具体来说,研究人员制作了一种载入姜黄素-黄柏纳米颗粒(Cur@Lac NPs)的 GelMA/SilMA 水凝胶。利用微流体漩涡混合器配制出稳定的 Cur@Lac NPs,确保了其稳定有效的封装。姜黄素从 NPs 中释放的 pH 值特异性证明了其治疗结肠癌的潜力。通过仔细调节 GelMA(甲基丙烯酸明胶)和 SilMA(甲基丙烯酸丝纤维素)的比例,生成了 GelMA/SilMA 双网络水凝胶,具有可控释放和降解能力。SilMA 的加入显著增强了双网络基质的机械性能,提高了抗压性并减轻了变形。这种机械性能的改善对于在体内应用时保持水凝胶的结构完整性至关重要。与姜黄素的直接孵育相比,将姜黄素封装到 NPs 中并将其嵌入 GelMA/SilMA 水凝胶的策略能带来更可控的释放机制。这种控制释放是通过 NPs 的崩解以及水凝胶基质的溶胀和降解实现的。利用 NPs 和原位水凝胶注射的优势,这种封装策略还增强了细胞对姜黄素的吸收。这种组合可确保更高效、更持久地将治疗剂直接输送到肿瘤部位。总之,这种方法有望成为一种智能给药系统,通过提供有针对性的、可控的、持续的药物释放,并增强机械稳定性和生物相容性,从而提高结直肠癌的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Curcumin-shellac nanoparticle-loaded GelMA/SilMA hydrogel for colorectal cancer therapy

Curcumin-shellac nanoparticle-loaded GelMA/SilMA hydrogel for colorectal cancer therapy

In this study, a novel approach was employed to develop a therapeutic system for colorectal cancer treatment. Specifically, a GelMA/SilMA hydrogel loaded with curcumin-shellac nanoparticles (Cur@Lac NPs) was created. A microfluidic swirl mixer was utilized to formulate stable Cur@Lac NPs, ensuring their consistent and effective encapsulation. The pH-specific release of curcumin from the NPs demonstrated their potential for colon cancer treatment. By carefully regulating the ratio of GelMA (gelatin methacrylate) and SilMA (silk fibroin methacrylate), a GelMA/SilMA dual network hydrogel was generated, offering controlled release and degradation capabilities. The incorporation of SilMA notably enhanced the mechanical properties of the dual network matrix, improving compression resistance and mitigating deformation. This mechanical improvement is crucial for maintaining the structural integrity of the hydrogel during in vivo applications. In comparison to the direct incubation of curcumin, the strategy of encapsulating curcumin into NPs and embedding them within the GelMA/SilMA hydrogel resulted in more controlled release mechanisms. This controlled release was achieved through the disintegration of the NPs and the swelling and degradation of the hydrogel matrix. The encapsulating strategy also demonstrated enhanced cellular uptake of curcumin, leveraging the advantages of both NPs and in-situ hydrogel injection. This combination ensures a more efficient and sustained delivery of the therapeutic agent directly to the tumor site. Overall, this approach holds significant promise as a smart drug delivery system, potentially improving the efficacy of colorectal cancer treatments by providing targeted, controlled, and sustained drug release with enhanced mechanical stability and biocompatibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
4.10%
发文量
211
审稿时长
36 days
期刊介绍: The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics. Topics covered include for example: Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids) Aspects of manufacturing process design Biomedical aspects of drug product design Strategies and formulations for controlled drug transport across biological barriers Physicochemical aspects of drug product development Novel excipients for drug product design Drug delivery and controlled release systems for systemic and local applications Nanomaterials for therapeutic and diagnostic purposes Advanced therapy medicinal products Medical devices supporting a distinct pharmacological effect.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信