{"title":"通过 Ag-SiO2 半壳纳米结构的光热形变和紫外光固化树脂扩大可控光谱区域实现可调谐质子共振","authors":"Narumi Asato, Ryushi Fujimura","doi":"10.1007/s10043-024-00899-z","DOIUrl":null,"url":null,"abstract":"<p>The Ag semi-shell, a nanostructure comprising a dielectric nanosphere partially covered with Ag metal, can have its metallic shell deformed through a melting process under the illumination of plasmonic resonance. We have investigated the photothermal deformation process in Ag semi-shells and observed intensity-dependent melting deformation of the shell and a corresponding blueshift of the resonance peak. This indicates that the plasmonic resonance of the Ag semi-shells can be continuously controlled through laser irradiation. Furthermore, when the Ag semi-shells were coated with a UV-curable resin, the initial resonance peak wavelength was red-shifted, and the controllable spectral region was increased by a factor of two compared to that without the UV-curable resin. This large continuous control of the optical response through melting deformation of the shell has potential applications in optical memory, plasmonic color, and other areas.</p>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"42 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable plasmonic resonance by photothermal deformation in Ag-SiO2 semi-shell nanostructures and enlargement of the controllable spectral region by UV-curable resin\",\"authors\":\"Narumi Asato, Ryushi Fujimura\",\"doi\":\"10.1007/s10043-024-00899-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Ag semi-shell, a nanostructure comprising a dielectric nanosphere partially covered with Ag metal, can have its metallic shell deformed through a melting process under the illumination of plasmonic resonance. We have investigated the photothermal deformation process in Ag semi-shells and observed intensity-dependent melting deformation of the shell and a corresponding blueshift of the resonance peak. This indicates that the plasmonic resonance of the Ag semi-shells can be continuously controlled through laser irradiation. Furthermore, when the Ag semi-shells were coated with a UV-curable resin, the initial resonance peak wavelength was red-shifted, and the controllable spectral region was increased by a factor of two compared to that without the UV-curable resin. This large continuous control of the optical response through melting deformation of the shell has potential applications in optical memory, plasmonic color, and other areas.</p>\",\"PeriodicalId\":722,\"journal\":{\"name\":\"Optical Review\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Review\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s10043-024-00899-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10043-024-00899-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Tunable plasmonic resonance by photothermal deformation in Ag-SiO2 semi-shell nanostructures and enlargement of the controllable spectral region by UV-curable resin
The Ag semi-shell, a nanostructure comprising a dielectric nanosphere partially covered with Ag metal, can have its metallic shell deformed through a melting process under the illumination of plasmonic resonance. We have investigated the photothermal deformation process in Ag semi-shells and observed intensity-dependent melting deformation of the shell and a corresponding blueshift of the resonance peak. This indicates that the plasmonic resonance of the Ag semi-shells can be continuously controlled through laser irradiation. Furthermore, when the Ag semi-shells were coated with a UV-curable resin, the initial resonance peak wavelength was red-shifted, and the controllable spectral region was increased by a factor of two compared to that without the UV-curable resin. This large continuous control of the optical response through melting deformation of the shell has potential applications in optical memory, plasmonic color, and other areas.
期刊介绍:
Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is:
General and physical optics;
Quantum optics and spectroscopy;
Information optics;
Photonics and optoelectronics;
Biomedical photonics and biological optics;
Lasers;
Nonlinear optics;
Optical systems and technologies;
Optical materials and manufacturing technologies;
Vision;
Infrared and short wavelength optics;
Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies;
Other optical methods and applications.