评估野火后水质的概念框架:科学现状与知识差距

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Sarah M. Elliott, Michelle I. Hornberger, Donald O. Rosenberry, Rebecca J. Frus, Richard M. Webb
{"title":"评估野火后水质的概念框架:科学现状与知识差距","authors":"Sarah M. Elliott, Michelle I. Hornberger, Donald O. Rosenberry, Rebecca J. Frus, Richard M. Webb","doi":"10.1029/2023wr036260","DOIUrl":null,"url":null,"abstract":"Wildfire substantially alters aquatic ecosystems by inducing moderate to catastrophic physical and chemical changes. However, the relations of environmental and watershed variables that drive those effects are complex. We present a Driver-Factor-Stressor-Effect (DFSE) conceptual framework to assess the current state of the science related to post-wildfire water-quality. We reviewed 64 peer-reviewed papers using the DFSE framework to identify drivers, factors, stressors, and effects associated with each study. A total of five drivers were identified and ranked according to their frequency of occurrence in the literature: atmospheric processes > fire characteristics > ecologic processes and characteristics > land surface characteristics > soil characteristics. Commonly reported stressors include increased nutrients, runoff, and sediment transport. Furthermore, although several different factors have been used at least once to explain water-quality effects, relatively few factors outside of precipitation and fire characteristics are frequently studied. We identified several gaps indicating the need for long-term monitoring, multi-factor studies, consideration of organic contaminants, consideration of groundwater, and inclusion of soil characteristics. This assessment expands on other reviews and meta-analyses by exploring causal linkages between influential variables and overall effects in post-wildfire watersheds. Information gathered from our assessment and the framework itself can be used to inform future monitoring plans and as a guide for modeling efforts focused on better understanding specific processes or to mitigate potential risks of post-wildfire water quality.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Conceptual Framework to Assess Post-Wildfire Water Quality: State of the Science and Knowledge Gaps\",\"authors\":\"Sarah M. Elliott, Michelle I. Hornberger, Donald O. Rosenberry, Rebecca J. Frus, Richard M. Webb\",\"doi\":\"10.1029/2023wr036260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wildfire substantially alters aquatic ecosystems by inducing moderate to catastrophic physical and chemical changes. However, the relations of environmental and watershed variables that drive those effects are complex. We present a Driver-Factor-Stressor-Effect (DFSE) conceptual framework to assess the current state of the science related to post-wildfire water-quality. We reviewed 64 peer-reviewed papers using the DFSE framework to identify drivers, factors, stressors, and effects associated with each study. A total of five drivers were identified and ranked according to their frequency of occurrence in the literature: atmospheric processes > fire characteristics > ecologic processes and characteristics > land surface characteristics > soil characteristics. Commonly reported stressors include increased nutrients, runoff, and sediment transport. Furthermore, although several different factors have been used at least once to explain water-quality effects, relatively few factors outside of precipitation and fire characteristics are frequently studied. We identified several gaps indicating the need for long-term monitoring, multi-factor studies, consideration of organic contaminants, consideration of groundwater, and inclusion of soil characteristics. This assessment expands on other reviews and meta-analyses by exploring causal linkages between influential variables and overall effects in post-wildfire watersheds. Information gathered from our assessment and the framework itself can be used to inform future monitoring plans and as a guide for modeling efforts focused on better understanding specific processes or to mitigate potential risks of post-wildfire water quality.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr036260\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036260","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

野火会引起中度到灾难性的物理和化学变化,从而极大地改变水生生态系统。然而,驱动这些影响的环境和流域变量之间的关系非常复杂。我们提出了一个 "驱动因素-压力-影响"(DFSE)概念框架,以评估与野火后水质相关的科学现状。我们使用 DFSE 框架审查了 64 篇同行评审论文,以确定与每项研究相关的驱动因素、因子、压力源和效应。共确定了五个驱动因素,并根据其在文献中出现的频率进行了排序:大气过程;火灾特征;生态过程和特征;地表特征;土壤特性。常见的压力因素包括养分增加、径流和沉积物迁移。此外,虽然有几种不同的因素至少被用来解释过一次水质影响,但除降水和火灾特征外,经常被研究的因素相对较少。我们发现了一些差距,表明需要进行长期监测、多因素研究、考虑有机污染物、考虑地下水并纳入土壤特性。本评估通过探索影响变量与火灾后流域总体影响之间的因果联系,对其他综述和荟萃分析进行了扩展。从我们的评估和框架本身收集到的信息可用于为未来的监测计划提供信息,也可作为建模工作的指南,侧重于更好地了解特定过程或减轻火灾后水质的潜在风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Conceptual Framework to Assess Post-Wildfire Water Quality: State of the Science and Knowledge Gaps
Wildfire substantially alters aquatic ecosystems by inducing moderate to catastrophic physical and chemical changes. However, the relations of environmental and watershed variables that drive those effects are complex. We present a Driver-Factor-Stressor-Effect (DFSE) conceptual framework to assess the current state of the science related to post-wildfire water-quality. We reviewed 64 peer-reviewed papers using the DFSE framework to identify drivers, factors, stressors, and effects associated with each study. A total of five drivers were identified and ranked according to their frequency of occurrence in the literature: atmospheric processes > fire characteristics > ecologic processes and characteristics > land surface characteristics > soil characteristics. Commonly reported stressors include increased nutrients, runoff, and sediment transport. Furthermore, although several different factors have been used at least once to explain water-quality effects, relatively few factors outside of precipitation and fire characteristics are frequently studied. We identified several gaps indicating the need for long-term monitoring, multi-factor studies, consideration of organic contaminants, consideration of groundwater, and inclusion of soil characteristics. This assessment expands on other reviews and meta-analyses by exploring causal linkages between influential variables and overall effects in post-wildfire watersheds. Information gathered from our assessment and the framework itself can be used to inform future monitoring plans and as a guide for modeling efforts focused on better understanding specific processes or to mitigate potential risks of post-wildfire water quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信