通过主客体相互作用促进软物质的刺激响应运动

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2024-10-10 DOI:10.1016/j.chempr.2024.06.016
{"title":"通过主客体相互作用促进软物质的刺激响应运动","authors":"","doi":"10.1016/j.chempr.2024.06.016","DOIUrl":null,"url":null,"abstract":"<div><div><span><span>Soft actuators capable of performing complex mechanical motions are highly sought after for the development of next-generation smart materials. Nevertheless, none of the soft actuators reported to date have achieved multiple </span>actuation<span> modes using a single material. To overcome this limitation, we present a responsive composite film that displays distinct actuation modes when exposed to organic vapors. This material is readily prepared and scaled up by incorporating novel urea-cage compounds into a </span></span>polymer matrix<span>. Through a comprehensive investigation into the actuation mechanism, we demonstrate that the exceptional actuation behavior arises from the polymorphic transformations of the crystalline urea cages, which are triggered by selective host-guest interactions between the cages and solvent guests. It is worth emphasizing that, for the first time, the tool of host-guest chemistry has been harnessed to achieve complex mechanical motion in a soft actuator.</span></div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 3184-3198"},"PeriodicalIF":19.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promoting stimuli-responsive motion in soft matter by host-guest interactions\",\"authors\":\"\",\"doi\":\"10.1016/j.chempr.2024.06.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span><span>Soft actuators capable of performing complex mechanical motions are highly sought after for the development of next-generation smart materials. Nevertheless, none of the soft actuators reported to date have achieved multiple </span>actuation<span> modes using a single material. To overcome this limitation, we present a responsive composite film that displays distinct actuation modes when exposed to organic vapors. This material is readily prepared and scaled up by incorporating novel urea-cage compounds into a </span></span>polymer matrix<span>. Through a comprehensive investigation into the actuation mechanism, we demonstrate that the exceptional actuation behavior arises from the polymorphic transformations of the crystalline urea cages, which are triggered by selective host-guest interactions between the cages and solvent guests. It is worth emphasizing that, for the first time, the tool of host-guest chemistry has been harnessed to achieve complex mechanical motion in a soft actuator.</span></div></div>\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"10 10\",\"pages\":\"Pages 3184-3198\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245192942400295X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245192942400295X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

能够执行复杂机械运动的软致动器在下一代智能材料的开发中备受追捧。然而,迄今为止所报道的软致动器中,还没有一种能利用单一材料实现多种致动模式。为了克服这一局限性,我们提出了一种反应性复合薄膜,它在暴露于有机蒸汽时能显示出不同的致动模式。通过在聚合物基体中加入新型脲笼化合物,这种材料很容易制备和放大。通过对致动机理的全面研究,我们证明这种特殊的致动行为源于结晶脲笼的多态转变,这种转变是由脲笼和溶剂客体之间的选择性主客体相互作用引发的。值得强调的是,我们首次利用主客体化学工具在软致动器中实现了复杂的机械运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Promoting stimuli-responsive motion in soft matter by host-guest interactions

Promoting stimuli-responsive motion in soft matter by host-guest interactions

Promoting stimuli-responsive motion in soft matter by host-guest interactions
Soft actuators capable of performing complex mechanical motions are highly sought after for the development of next-generation smart materials. Nevertheless, none of the soft actuators reported to date have achieved multiple actuation modes using a single material. To overcome this limitation, we present a responsive composite film that displays distinct actuation modes when exposed to organic vapors. This material is readily prepared and scaled up by incorporating novel urea-cage compounds into a polymer matrix. Through a comprehensive investigation into the actuation mechanism, we demonstrate that the exceptional actuation behavior arises from the polymorphic transformations of the crystalline urea cages, which are triggered by selective host-guest interactions between the cages and solvent guests. It is worth emphasizing that, for the first time, the tool of host-guest chemistry has been harnessed to achieve complex mechanical motion in a soft actuator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信