低频红外电磁场下异嗜硝酸盐还原成氨过程的长期运行和动态响应

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yuyang Xie, Zhibin Wang, Sherif Ismail, Shou-Qing Ni
{"title":"低频红外电磁场下异嗜硝酸盐还原成氨过程的长期运行和动态响应","authors":"Yuyang Xie, Zhibin Wang, Sherif Ismail, Shou-Qing Ni","doi":"10.1038/s41545-024-00356-z","DOIUrl":null,"url":null,"abstract":"Dissimilatory nitrate reduction to ammonium (DNRA) received more attention for its ability to recover ammonium. This study investigated the possibility of low-frequency infrared electromagnetic field (IR-EMF) to improve DNRA. The optimal IR-EMF intensity of 0.04 μT could effectively improve DNRA activity of nonwoven fabric membrane bioreactors. In the long-term operation, the average ammonium conversion efficiency was enhanced by 117.7% and 62.5% under 0.04 μT and 0.06 μT IR-EMF, respectively. The highest nrfA-gene abundance and potential DNRA rate were obtained under 0.04 μT IR-EMF exposure. Bacteroidetes fragilis, Shewanelle oneidensis MR-1, and Thauera sp. RT1901 were selected to investigate the dynamic response of nitrogen transformation and energy metabolism to IR-EMF. The transcriptome sequencing and RT-qPCR results suggested that IR-EMF could enhance both denitrification and DNRA process, mainly by improving ATP synthesis to boost metabolic activity. This study provided an efficient method for the nitrogen recovery via DNRA process by applying IR-EMF.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-14"},"PeriodicalIF":10.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00356-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Long-term operation and dynamic response of dissimilatory nitrate reduction to ammonium process under low-frequency infrared electromagnetic field\",\"authors\":\"Yuyang Xie, Zhibin Wang, Sherif Ismail, Shou-Qing Ni\",\"doi\":\"10.1038/s41545-024-00356-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dissimilatory nitrate reduction to ammonium (DNRA) received more attention for its ability to recover ammonium. This study investigated the possibility of low-frequency infrared electromagnetic field (IR-EMF) to improve DNRA. The optimal IR-EMF intensity of 0.04 μT could effectively improve DNRA activity of nonwoven fabric membrane bioreactors. In the long-term operation, the average ammonium conversion efficiency was enhanced by 117.7% and 62.5% under 0.04 μT and 0.06 μT IR-EMF, respectively. The highest nrfA-gene abundance and potential DNRA rate were obtained under 0.04 μT IR-EMF exposure. Bacteroidetes fragilis, Shewanelle oneidensis MR-1, and Thauera sp. RT1901 were selected to investigate the dynamic response of nitrogen transformation and energy metabolism to IR-EMF. The transcriptome sequencing and RT-qPCR results suggested that IR-EMF could enhance both denitrification and DNRA process, mainly by improving ATP synthesis to boost metabolic activity. This study provided an efficient method for the nitrogen recovery via DNRA process by applying IR-EMF.\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41545-024-00356-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41545-024-00356-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00356-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

溶解性硝酸盐还原成铵(DNRA)因其回收铵的能力而受到更多关注。本研究探讨了低频红外电磁场(IR-EMF)改善 DNRA 的可能性。最佳红外电磁场强度为 0.04 μT,可有效提高无纺布膜生物反应器的 DNRA 活性。在长期运行过程中,0.04 μT和0.06 μT IR-EMF条件下的平均铵转化效率分别提高了117.7%和62.5%。在 0.04 μT IR-EMF 暴露条件下,nrfA 基因丰度和潜在 DNRA 率最高。选择脆弱拟杆菌、Shewanelle oneidensis MR-1和Thauera sp.RT1901研究氮转化和能量代谢对IR-EMF的动态响应。转录组测序和 RT-qPCR 结果表明,IR-EMF 主要通过改善 ATP 合成来提高代谢活性,从而增强反硝化和 DNRA 过程。该研究为利用 IR-EMF 通过 DNRA 过程进行氮回收提供了一种有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Long-term operation and dynamic response of dissimilatory nitrate reduction to ammonium process under low-frequency infrared electromagnetic field

Long-term operation and dynamic response of dissimilatory nitrate reduction to ammonium process under low-frequency infrared electromagnetic field

Long-term operation and dynamic response of dissimilatory nitrate reduction to ammonium process under low-frequency infrared electromagnetic field
Dissimilatory nitrate reduction to ammonium (DNRA) received more attention for its ability to recover ammonium. This study investigated the possibility of low-frequency infrared electromagnetic field (IR-EMF) to improve DNRA. The optimal IR-EMF intensity of 0.04 μT could effectively improve DNRA activity of nonwoven fabric membrane bioreactors. In the long-term operation, the average ammonium conversion efficiency was enhanced by 117.7% and 62.5% under 0.04 μT and 0.06 μT IR-EMF, respectively. The highest nrfA-gene abundance and potential DNRA rate were obtained under 0.04 μT IR-EMF exposure. Bacteroidetes fragilis, Shewanelle oneidensis MR-1, and Thauera sp. RT1901 were selected to investigate the dynamic response of nitrogen transformation and energy metabolism to IR-EMF. The transcriptome sequencing and RT-qPCR results suggested that IR-EMF could enhance both denitrification and DNRA process, mainly by improving ATP synthesis to boost metabolic activity. This study provided an efficient method for the nitrogen recovery via DNRA process by applying IR-EMF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信