角频率在基于场地的随机地动模型中的重要性

IF 4.3 2区 工程技术 Q1 ENGINEERING, CIVIL
Maijia Su, Mayssa Dabaghi, Marco Broccardo
{"title":"角频率在基于场地的随机地动模型中的重要性","authors":"Maijia Su,&nbsp;Mayssa Dabaghi,&nbsp;Marco Broccardo","doi":"10.1002/eqe.4139","DOIUrl":null,"url":null,"abstract":"<p>Synthetic ground motions (GMs) play a fundamental role in both deterministic and probabilistic seismic engineering assessments. This paper shows that the family of filtered and modulated white noise stochastic GM models overlooks a key parameter—the high-pass filter's corner frequency, <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mi>c</mi>\n </msub>\n <annotation>$f_c$</annotation>\n </semantics></math>. In the simulated motions, this causes significant distortions in the long-period range of the linear-response spectra and in the linear-response spectral correlations. To address this, we incorporate <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mi>c</mi>\n </msub>\n <annotation>$f_c$</annotation>\n </semantics></math> as an explicitly fitted parameter in a site-based stochastic model. We optimize <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mi>c</mi>\n </msub>\n <annotation>$f_c$</annotation>\n </semantics></math> by individually matching the long-period linear-response spectrum (i.e., <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>a</mi>\n <mo>(</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$Sa(T)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>≥</mo>\n <mn>1</mn>\n <mspace></mspace>\n <mi>s</mi>\n </mrow>\n <annotation>$T \\ge 1\\,{\\rm {s}}$</annotation>\n </semantics></math>) of synthetic GMs with that of each recorded GM. We show that by fitting <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mi>c</mi>\n </msub>\n <annotation>$f_c$</annotation>\n </semantics></math> the resulting stochastically simulated GMs can precisely capture the spectral amplitudes, variability (i.e., variances of <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mo>(</mo>\n <mi>S</mi>\n <mi>a</mi>\n <mo>(</mo>\n <mi>T</mi>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$\\log (Sa(T))$</annotation>\n </semantics></math>), and the correlation structure (i.e., correlation of <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mo>(</mo>\n <mi>S</mi>\n <mi>a</mi>\n <mo>(</mo>\n <mi>T</mi>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$\\log (Sa(T))$</annotation>\n </semantics></math> between distinct periods <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mn>1</mn>\n </msub>\n <annotation>$T_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mn>2</mn>\n </msub>\n <annotation>$T_2$</annotation>\n </semantics></math>) of recorded GMs. To quantify the impact of <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mi>c</mi>\n </msub>\n <annotation>$f_c$</annotation>\n </semantics></math>, a sensitivity analysis is conducted through linear regression. This regression relates the logarithmic linear-response spectrum (<span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mo>(</mo>\n <mi>S</mi>\n <mi>a</mi>\n <mo>(</mo>\n <mi>T</mi>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$\\log (Sa(T))$</annotation>\n </semantics></math>) to 7 GM parameters, including the optimized <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mi>c</mi>\n </msub>\n <annotation>$f_c$</annotation>\n </semantics></math>. The results indicate that the variance of <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mi>c</mi>\n </msub>\n <annotation>$f_c$</annotation>\n </semantics></math> observed in natural GMs, along with its correlation with the other GM parameters, accounts for 26% of the spectral variability in long periods. Neglecting either the <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mi>c</mi>\n </msub>\n <annotation>$f_c$</annotation>\n </semantics></math> variance or <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mi>c</mi>\n </msub>\n <annotation>$f_c$</annotation>\n </semantics></math> correlation typically results in an important overestimation of the linear-response spectral correlation.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"53 10","pages":"3318-3329"},"PeriodicalIF":4.3000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The importance of corner frequency in site-based stochastic ground motion models\",\"authors\":\"Maijia Su,&nbsp;Mayssa Dabaghi,&nbsp;Marco Broccardo\",\"doi\":\"10.1002/eqe.4139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Synthetic ground motions (GMs) play a fundamental role in both deterministic and probabilistic seismic engineering assessments. This paper shows that the family of filtered and modulated white noise stochastic GM models overlooks a key parameter—the high-pass filter's corner frequency, <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mi>c</mi>\\n </msub>\\n <annotation>$f_c$</annotation>\\n </semantics></math>. In the simulated motions, this causes significant distortions in the long-period range of the linear-response spectra and in the linear-response spectral correlations. To address this, we incorporate <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mi>c</mi>\\n </msub>\\n <annotation>$f_c$</annotation>\\n </semantics></math> as an explicitly fitted parameter in a site-based stochastic model. We optimize <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mi>c</mi>\\n </msub>\\n <annotation>$f_c$</annotation>\\n </semantics></math> by individually matching the long-period linear-response spectrum (i.e., <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mi>a</mi>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$Sa(T)$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mo>≥</mo>\\n <mn>1</mn>\\n <mspace></mspace>\\n <mi>s</mi>\\n </mrow>\\n <annotation>$T \\\\ge 1\\\\,{\\\\rm {s}}$</annotation>\\n </semantics></math>) of synthetic GMs with that of each recorded GM. We show that by fitting <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mi>c</mi>\\n </msub>\\n <annotation>$f_c$</annotation>\\n </semantics></math> the resulting stochastically simulated GMs can precisely capture the spectral amplitudes, variability (i.e., variances of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>log</mi>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mi>a</mi>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\log (Sa(T))$</annotation>\\n </semantics></math>), and the correlation structure (i.e., correlation of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>log</mi>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mi>a</mi>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\log (Sa(T))$</annotation>\\n </semantics></math> between distinct periods <span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$T_1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$T_2$</annotation>\\n </semantics></math>) of recorded GMs. To quantify the impact of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mi>c</mi>\\n </msub>\\n <annotation>$f_c$</annotation>\\n </semantics></math>, a sensitivity analysis is conducted through linear regression. This regression relates the logarithmic linear-response spectrum (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>log</mi>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mi>a</mi>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\log (Sa(T))$</annotation>\\n </semantics></math>) to 7 GM parameters, including the optimized <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mi>c</mi>\\n </msub>\\n <annotation>$f_c$</annotation>\\n </semantics></math>. The results indicate that the variance of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mi>c</mi>\\n </msub>\\n <annotation>$f_c$</annotation>\\n </semantics></math> observed in natural GMs, along with its correlation with the other GM parameters, accounts for 26% of the spectral variability in long periods. Neglecting either the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mi>c</mi>\\n </msub>\\n <annotation>$f_c$</annotation>\\n </semantics></math> variance or <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mi>c</mi>\\n </msub>\\n <annotation>$f_c$</annotation>\\n </semantics></math> correlation typically results in an important overestimation of the linear-response spectral correlation.</p>\",\"PeriodicalId\":11390,\"journal\":{\"name\":\"Earthquake Engineering & Structural Dynamics\",\"volume\":\"53 10\",\"pages\":\"3318-3329\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering & Structural Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4139\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4139","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

合成地震动(GM)在确定性和概率性地震工程评估中都发挥着重要作用。本文表明,滤波和调制白噪声随机 GM 模型系列忽略了一个关键参数--高通滤波器的角频率 f c $f_c$ 。在模拟运动中,这会导致线性响应频谱的长周期范围和线性响应频谱相关性发生严重失真。为了解决这个问题,我们将 f c $f_c$ 作为一个明确的拟合参数纳入基于场址的随机模型中。我们通过将合成全球机制的长周期线性响应谱(即 S a ( T ) $Sa(T)$ for T ≥ 1 s $T \ge 1\,{\rm {s}}$)与每个记录的全球机制的长周期线性响应谱进行单独匹配来优化 f c $f_c$。我们证明,通过拟合 f c $f_c$,得到的随机模拟 GM 可以精确捕捉记录 GM 的频谱振幅、变异性(即 log ( S a ( T ) ) $\log (Sa(T))$ 的方差)和相关结构(即不同时期 T 1 $T_1$ 和 T 2 $T_2$ 之间 log ( S a ( T ) ) $\log (Sa(T))$ 的相关性)。为了量化 f c $f_c$ 的影响,我们通过线性回归进行了敏感性分析。该回归将对数线性响应谱(log ( S a ( T ) ) $\log (Sa(T))$ )与 7 个 GM 参数(包括优化的 f c $f_c$)联系起来。结果表明,在自然全球机制中观测到的 f c $f_c$ 的方差及其与其他全球机制参数的相关性,占长周期频谱变化的 26%。忽略 f c $f_c$ 方差或 f c $f_c$ 相关性通常会导致严重高估线性响应光谱相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The importance of corner frequency in site-based stochastic ground motion models

Synthetic ground motions (GMs) play a fundamental role in both deterministic and probabilistic seismic engineering assessments. This paper shows that the family of filtered and modulated white noise stochastic GM models overlooks a key parameter—the high-pass filter's corner frequency, f c $f_c$ . In the simulated motions, this causes significant distortions in the long-period range of the linear-response spectra and in the linear-response spectral correlations. To address this, we incorporate f c $f_c$ as an explicitly fitted parameter in a site-based stochastic model. We optimize f c $f_c$ by individually matching the long-period linear-response spectrum (i.e., S a ( T ) $Sa(T)$ for T 1 s $T \ge 1\,{\rm {s}}$ ) of synthetic GMs with that of each recorded GM. We show that by fitting f c $f_c$ the resulting stochastically simulated GMs can precisely capture the spectral amplitudes, variability (i.e., variances of log ( S a ( T ) ) $\log (Sa(T))$ ), and the correlation structure (i.e., correlation of log ( S a ( T ) ) $\log (Sa(T))$ between distinct periods T 1 $T_1$ and T 2 $T_2$ ) of recorded GMs. To quantify the impact of f c $f_c$ , a sensitivity analysis is conducted through linear regression. This regression relates the logarithmic linear-response spectrum ( log ( S a ( T ) ) $\log (Sa(T))$ ) to 7 GM parameters, including the optimized f c $f_c$ . The results indicate that the variance of f c $f_c$ observed in natural GMs, along with its correlation with the other GM parameters, accounts for 26% of the spectral variability in long periods. Neglecting either the f c $f_c$ variance or f c $f_c$ correlation typically results in an important overestimation of the linear-response spectral correlation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquake Engineering & Structural Dynamics
Earthquake Engineering & Structural Dynamics 工程技术-工程:地质
CiteScore
7.20
自引率
13.30%
发文量
180
审稿时长
4.8 months
期刊介绍: Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following: ground motions for analysis and design geotechnical earthquake engineering probabilistic and deterministic methods of dynamic analysis experimental behaviour of structures seismic protective systems system identification risk assessment seismic code requirements methods for earthquake-resistant design and retrofit of structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信