X 0 ( N ) ${X}_0(N)$ 最小正则模型的交集矩阵及其在阿拉克洛夫典范剪辑中的应用

IF 1 2区 数学 Q1 MATHEMATICS
Paolo Dolce, Pietro Mercuri
{"title":"X 0 ( N ) ${X}_0(N)$ 最小正则模型的交集矩阵及其在阿拉克洛夫典范剪辑中的应用","authors":"Paolo Dolce,&nbsp;Pietro Mercuri","doi":"10.1112/jlms.12964","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>&gt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$N&amp;gt;1$</annotation>\n </semantics></math> be an integer coprime to 6 such that <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>∉</mo>\n <mo>{</mo>\n <mn>5</mn>\n <mo>,</mo>\n <mn>7</mn>\n <mo>,</mo>\n <mn>13</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$N\\notin \\lbrace 5,7,13\\rbrace$</annotation>\n </semantics></math> and let <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mi>g</mi>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$g=g(N)$</annotation>\n </semantics></math> be the genus of the modular curve <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>X</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$X_0(N)$</annotation>\n </semantics></math>. We compute the intersection matrices relative to special fibres of the minimal regular model of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>X</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$X_0(N)$</annotation>\n </semantics></math>. Moreover, we prove that the self-intersection of the Arakelov canonical sheaf of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>X</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$X_0(N)$</annotation>\n </semantics></math> is asymptotic to <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mi>g</mi>\n <mi>log</mi>\n <mi>N</mi>\n </mrow>\n <annotation>$3g\\log N$</annotation>\n </semantics></math>, for <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>→</mo>\n <mo>+</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$N\\rightarrow +\\infty$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersection matrices for the minimal regular model of \\n \\n \\n \\n X\\n 0\\n \\n \\n (\\n N\\n )\\n \\n \\n ${X}_0(N)$\\n and applications to the Arakelov canonical sheaf\",\"authors\":\"Paolo Dolce,&nbsp;Pietro Mercuri\",\"doi\":\"10.1112/jlms.12964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>&gt;</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$N&amp;gt;1$</annotation>\\n </semantics></math> be an integer coprime to 6 such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>∉</mo>\\n <mo>{</mo>\\n <mn>5</mn>\\n <mo>,</mo>\\n <mn>7</mn>\\n <mo>,</mo>\\n <mn>13</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$N\\\\notin \\\\lbrace 5,7,13\\\\rbrace$</annotation>\\n </semantics></math> and let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mo>=</mo>\\n <mi>g</mi>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$g=g(N)$</annotation>\\n </semantics></math> be the genus of the modular curve <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>X</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$X_0(N)$</annotation>\\n </semantics></math>. We compute the intersection matrices relative to special fibres of the minimal regular model of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>X</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$X_0(N)$</annotation>\\n </semantics></math>. Moreover, we prove that the self-intersection of the Arakelov canonical sheaf of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>X</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$X_0(N)$</annotation>\\n </semantics></math> is asymptotic to <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <mi>g</mi>\\n <mi>log</mi>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$3g\\\\log N$</annotation>\\n </semantics></math>, for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>→</mo>\\n <mo>+</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$N\\\\rightarrow +\\\\infty$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12964\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12964","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 N > 1 $N&gt;1$是一个与 6 共乘的整数,使得 N ∉ { 5 , 7 , 13 }。 $Nnotin \lbrace 5,7,13\rbrace$ 并让 g = g ( N ) $g=g(N)$ 是模态曲线 X 0 ( N ) $X_0(N)$ 的属数。我们计算相对于 X 0 ( N ) $X_0(N)$ 最小正则模型的特殊纤维的交集矩阵。此外,我们还证明了在 N → + ∞ $N\rightarrow +\infty$ 时,X 0 ( N ) $X_0(N)$ 的阿拉克洛夫(Arakelov)典范 Sheaf 的自交渐近于 3 g log N $3g\log N$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intersection matrices for the minimal regular model of X 0 ( N ) ${X}_0(N)$ and applications to the Arakelov canonical sheaf

Let N > 1 $N&gt;1$ be an integer coprime to 6 such that N { 5 , 7 , 13 } $N\notin \lbrace 5,7,13\rbrace$ and let g = g ( N ) $g=g(N)$ be the genus of the modular curve X 0 ( N ) $X_0(N)$ . We compute the intersection matrices relative to special fibres of the minimal regular model of X 0 ( N ) $X_0(N)$ . Moreover, we prove that the self-intersection of the Arakelov canonical sheaf of X 0 ( N ) $X_0(N)$ is asymptotic to 3 g log N $3g\log N$ , for N + $N\rightarrow +\infty$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信