{"title":"在锂硫电池正极材料中应用掺杂 Zif-67 衍生物镍钴锰硒的碳纳米管","authors":"Wenting Hu, Wangjun Feng, Yueping Niu, Zhifeng Zhao, Li Zhang, XiaoPing Zheng","doi":"10.1016/j.ssi.2024.116623","DOIUrl":null,"url":null,"abstract":"<div><p>Given the rising need for energy storage systems with high energy density and extended durability, lithium‑sulfur batteries have garnered interest due to their elevated theoretical specific capacity and energy density. However, the practical application of lithium‑sulfur (Li<img>S) batteries faces several obstacles, including the low conductivity of sulfur and the dissolution of lithium polysulphides during cycling, leading to low cycling stability and capacity degradation. In this study, which is dedicated to solving the problems of poor conductivity and dissolution of polysulfides faced by lithium‑sulfur (Li<img>S) batteries in practical applications, NiCoMnSe electrode materials were successfully synthesised by employing ZIF-67 as a template and optimised by the addition of carbon nanotubes (CNT). The unique structure and excellent performance of the NiCoMnSe-CNT-2 composites were verified by various characterisation means. The experimental results show that the initial charge-discharge capacity of NiCoMnSe-CNT-2 composite is as high as 1387.3 mAh/g at a current density of 0.2C. After 200 charge-discharge cycles, the specific capacity of NiCoMnSe-CNT-2 composite can still remain at 1084.86 mAh/g. The study therefore makes an important contribution to progress in the field of clean energy storage.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116623"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of carbon nanotubes doped with zif-67 derived nickel‑cobalt‑manganese selenide in cathode materials of lithium‑sulfur batteries\",\"authors\":\"Wenting Hu, Wangjun Feng, Yueping Niu, Zhifeng Zhao, Li Zhang, XiaoPing Zheng\",\"doi\":\"10.1016/j.ssi.2024.116623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given the rising need for energy storage systems with high energy density and extended durability, lithium‑sulfur batteries have garnered interest due to their elevated theoretical specific capacity and energy density. However, the practical application of lithium‑sulfur (Li<img>S) batteries faces several obstacles, including the low conductivity of sulfur and the dissolution of lithium polysulphides during cycling, leading to low cycling stability and capacity degradation. In this study, which is dedicated to solving the problems of poor conductivity and dissolution of polysulfides faced by lithium‑sulfur (Li<img>S) batteries in practical applications, NiCoMnSe electrode materials were successfully synthesised by employing ZIF-67 as a template and optimised by the addition of carbon nanotubes (CNT). The unique structure and excellent performance of the NiCoMnSe-CNT-2 composites were verified by various characterisation means. The experimental results show that the initial charge-discharge capacity of NiCoMnSe-CNT-2 composite is as high as 1387.3 mAh/g at a current density of 0.2C. After 200 charge-discharge cycles, the specific capacity of NiCoMnSe-CNT-2 composite can still remain at 1084.86 mAh/g. The study therefore makes an important contribution to progress in the field of clean energy storage.</p></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"414 \",\"pages\":\"Article 116623\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273824001711\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824001711","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Application of carbon nanotubes doped with zif-67 derived nickel‑cobalt‑manganese selenide in cathode materials of lithium‑sulfur batteries
Given the rising need for energy storage systems with high energy density and extended durability, lithium‑sulfur batteries have garnered interest due to their elevated theoretical specific capacity and energy density. However, the practical application of lithium‑sulfur (LiS) batteries faces several obstacles, including the low conductivity of sulfur and the dissolution of lithium polysulphides during cycling, leading to low cycling stability and capacity degradation. In this study, which is dedicated to solving the problems of poor conductivity and dissolution of polysulfides faced by lithium‑sulfur (LiS) batteries in practical applications, NiCoMnSe electrode materials were successfully synthesised by employing ZIF-67 as a template and optimised by the addition of carbon nanotubes (CNT). The unique structure and excellent performance of the NiCoMnSe-CNT-2 composites were verified by various characterisation means. The experimental results show that the initial charge-discharge capacity of NiCoMnSe-CNT-2 composite is as high as 1387.3 mAh/g at a current density of 0.2C. After 200 charge-discharge cycles, the specific capacity of NiCoMnSe-CNT-2 composite can still remain at 1084.86 mAh/g. The study therefore makes an important contribution to progress in the field of clean energy storage.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.