利用瑞利波虚拟叠加干涉频谱测量应力的新方法

IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Yizheng zhang , Yan Lyu , Jie Gao , Yang Zheng , Yongkang Wang , Bin Wu , Cunfu He
{"title":"利用瑞利波虚拟叠加干涉频谱测量应力的新方法","authors":"Yizheng zhang ,&nbsp;Yan Lyu ,&nbsp;Jie Gao ,&nbsp;Yang Zheng ,&nbsp;Yongkang Wang ,&nbsp;Bin Wu ,&nbsp;Cunfu He","doi":"10.1016/j.ndteint.2024.103169","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel stress measurement method utilizing the Rayleigh waves virtual superimposed interference spectrum (RW-VSIS). This method achieves stress measurements by exploiting the effect of stress on the superimposed interference spectrum of two beams of Rayleigh waves. Firstly, the effect of stress on Rayleigh wave velocity is theoretically investigated by partial wave theory and matrix solving algorithm. The theoretical results show that the Rayleigh wave propagation direction versus the stress direction will affect the wave velocity and the time of flight (TOF). Then, a theoretical model of RW-VSIS under pre-stress is derived. It's found that the stress will dominate the first characteristic frequency (FCF). The regulation effects of propagation distance and angle on FCF are discussed. Finally, the feasibility of stress measurement based on the FCF is validated through experiments. The impact of stress on TOF and FCF is comparatively analyzed. The results show a significant improvement of stress measurement by FCF in the superimposed interference spectrum, compared to the TOF in time domain waveform. With a calibration and verification test for the unknow coefficient of an aluminum specimen, the experimental examination of the stress shows a maximum error of less than 4 MPa indicating good measurement accuracy.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"146 ","pages":"Article 103169"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method for stress measurement utilizing the Rayleigh wave virtual superimposed interference spectrum\",\"authors\":\"Yizheng zhang ,&nbsp;Yan Lyu ,&nbsp;Jie Gao ,&nbsp;Yang Zheng ,&nbsp;Yongkang Wang ,&nbsp;Bin Wu ,&nbsp;Cunfu He\",\"doi\":\"10.1016/j.ndteint.2024.103169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a novel stress measurement method utilizing the Rayleigh waves virtual superimposed interference spectrum (RW-VSIS). This method achieves stress measurements by exploiting the effect of stress on the superimposed interference spectrum of two beams of Rayleigh waves. Firstly, the effect of stress on Rayleigh wave velocity is theoretically investigated by partial wave theory and matrix solving algorithm. The theoretical results show that the Rayleigh wave propagation direction versus the stress direction will affect the wave velocity and the time of flight (TOF). Then, a theoretical model of RW-VSIS under pre-stress is derived. It's found that the stress will dominate the first characteristic frequency (FCF). The regulation effects of propagation distance and angle on FCF are discussed. Finally, the feasibility of stress measurement based on the FCF is validated through experiments. The impact of stress on TOF and FCF is comparatively analyzed. The results show a significant improvement of stress measurement by FCF in the superimposed interference spectrum, compared to the TOF in time domain waveform. With a calibration and verification test for the unknow coefficient of an aluminum specimen, the experimental examination of the stress shows a maximum error of less than 4 MPa indicating good measurement accuracy.</p></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"146 \",\"pages\":\"Article 103169\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524001348\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001348","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种利用瑞利波虚拟叠加干涉频谱(RW-VSIS)的新型应力测量方法。该方法利用应力对两束瑞利波叠加干涉频谱的影响来实现应力测量。首先,利用偏波理论和矩阵求解算法从理论上研究了应力对雷利波速度的影响。理论结果表明,瑞利波的传播方向与应力方向会影响波速和飞行时间(TOF)。然后,推导出了预应力下 RW-VSIS 的理论模型。研究发现,应力将主导第一特征频率(FCF)。讨论了传播距离和角度对 FCF 的调节作用。最后,通过实验验证了基于 FCF 的应力测量的可行性。比较分析了应力对 TOF 和 FCF 的影响。结果表明,与时域波形中的 TOF 相比,FCF 在叠加干扰频谱中的应力测量效果显著提高。通过对铝试样的未知系数进行校准和验证测试,应力的实验检测显示最大误差小于 4 兆帕,表明测量精度良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel method for stress measurement utilizing the Rayleigh wave virtual superimposed interference spectrum

This study presents a novel stress measurement method utilizing the Rayleigh waves virtual superimposed interference spectrum (RW-VSIS). This method achieves stress measurements by exploiting the effect of stress on the superimposed interference spectrum of two beams of Rayleigh waves. Firstly, the effect of stress on Rayleigh wave velocity is theoretically investigated by partial wave theory and matrix solving algorithm. The theoretical results show that the Rayleigh wave propagation direction versus the stress direction will affect the wave velocity and the time of flight (TOF). Then, a theoretical model of RW-VSIS under pre-stress is derived. It's found that the stress will dominate the first characteristic frequency (FCF). The regulation effects of propagation distance and angle on FCF are discussed. Finally, the feasibility of stress measurement based on the FCF is validated through experiments. The impact of stress on TOF and FCF is comparatively analyzed. The results show a significant improvement of stress measurement by FCF in the superimposed interference spectrum, compared to the TOF in time domain waveform. With a calibration and verification test for the unknow coefficient of an aluminum specimen, the experimental examination of the stress shows a maximum error of less than 4 MPa indicating good measurement accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ndt & E International
Ndt & E International 工程技术-材料科学:表征与测试
CiteScore
7.20
自引率
9.50%
发文量
121
审稿时长
55 days
期刊介绍: NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信