Samuel T. Thiele , Horthing V. Zimik , Anindita Samsu , Salim Akhtar , Akshay Kamath , Pankaj Khanna
{"title":"喜马拉雅山西北部普加地热田地下储层特性的露头模拟制约因素","authors":"Samuel T. Thiele , Horthing V. Zimik , Anindita Samsu , Salim Akhtar , Akshay Kamath , Pankaj Khanna","doi":"10.1016/j.geothermics.2024.103099","DOIUrl":null,"url":null,"abstract":"<div><p>The Puga valley, in Ladakh, contains one of India's most prospective geothermal systems. Substantial geophysical and geochemical research has been conducted to characterise this system, though uncertainties regarding the subsurface reservoir's geometry and permeability structure remain a barrier to its development. In this contribution, we aim to fill some of these knowledge gaps by integrating new geological data and structural analyses with previously published geochemical and geophysical interpretations, and derive an integrated conceptual model of the geothermal system. Using digital outcrop techniques and field mapping, we identify and characterise several important structures (faults and foliations) that facilitate fluid flow in the otherwise impermeable Tso Morari gneiss. Petrological and field evidence for outcropping hydrothermally altered lithologies, may have formed in a geothermal system analogous to the active one, are also presented. Based on these observations and a simplified finite-element model, we suggest that tectonic and topographic stresses likely control reservoir architecture and connectivity. Lastly, we caution that geomorphological evidence for neotectonic movement on faults at Puga indicate the need for seismic hazard assessment prior to exploitation of the geothermal system, and identify potential parallels between Puga and the Yangbajing geothermal field in China.</p></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Outcrop analogue constraints on subsurface reservoir properties of the Puga geothermal field, NW Himalaya\",\"authors\":\"Samuel T. Thiele , Horthing V. Zimik , Anindita Samsu , Salim Akhtar , Akshay Kamath , Pankaj Khanna\",\"doi\":\"10.1016/j.geothermics.2024.103099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Puga valley, in Ladakh, contains one of India's most prospective geothermal systems. Substantial geophysical and geochemical research has been conducted to characterise this system, though uncertainties regarding the subsurface reservoir's geometry and permeability structure remain a barrier to its development. In this contribution, we aim to fill some of these knowledge gaps by integrating new geological data and structural analyses with previously published geochemical and geophysical interpretations, and derive an integrated conceptual model of the geothermal system. Using digital outcrop techniques and field mapping, we identify and characterise several important structures (faults and foliations) that facilitate fluid flow in the otherwise impermeable Tso Morari gneiss. Petrological and field evidence for outcropping hydrothermally altered lithologies, may have formed in a geothermal system analogous to the active one, are also presented. Based on these observations and a simplified finite-element model, we suggest that tectonic and topographic stresses likely control reservoir architecture and connectivity. Lastly, we caution that geomorphological evidence for neotectonic movement on faults at Puga indicate the need for seismic hazard assessment prior to exploitation of the geothermal system, and identify potential parallels between Puga and the Yangbajing geothermal field in China.</p></div>\",\"PeriodicalId\":55095,\"journal\":{\"name\":\"Geothermics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037565052400186X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037565052400186X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Outcrop analogue constraints on subsurface reservoir properties of the Puga geothermal field, NW Himalaya
The Puga valley, in Ladakh, contains one of India's most prospective geothermal systems. Substantial geophysical and geochemical research has been conducted to characterise this system, though uncertainties regarding the subsurface reservoir's geometry and permeability structure remain a barrier to its development. In this contribution, we aim to fill some of these knowledge gaps by integrating new geological data and structural analyses with previously published geochemical and geophysical interpretations, and derive an integrated conceptual model of the geothermal system. Using digital outcrop techniques and field mapping, we identify and characterise several important structures (faults and foliations) that facilitate fluid flow in the otherwise impermeable Tso Morari gneiss. Petrological and field evidence for outcropping hydrothermally altered lithologies, may have formed in a geothermal system analogous to the active one, are also presented. Based on these observations and a simplified finite-element model, we suggest that tectonic and topographic stresses likely control reservoir architecture and connectivity. Lastly, we caution that geomorphological evidence for neotectonic movement on faults at Puga indicate the need for seismic hazard assessment prior to exploitation of the geothermal system, and identify potential parallels between Puga and the Yangbajing geothermal field in China.
期刊介绍:
Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field.
It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.