锥体中的洛伊文纳-尼伦堡问题

IF 1.7 2区 数学 Q1 MATHEMATICS
Qing Han , Xumin Jiang , Weiming Shen
{"title":"锥体中的洛伊文纳-尼伦堡问题","authors":"Qing Han ,&nbsp;Xumin Jiang ,&nbsp;Weiming Shen","doi":"10.1016/j.jfa.2024.110566","DOIUrl":null,"url":null,"abstract":"<div><p>We study asymptotic behaviors of solutions to the Loewner-Nirenberg problem in finite cones and establish optimal asymptotic expansions in terms of the corresponding solutions in infinite cones. The spherical domains over which cones are formed are allowed to have singularities. An elliptic operator on such spherical domains with coefficients singular on the boundary plays an important role. Due to the singularity of the spherical domains, extra care is needed for the study of the global regularity of the eigenfunctions and solutions of the associated singular Dirichlet problem.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Loewner-Nirenberg problem in cones\",\"authors\":\"Qing Han ,&nbsp;Xumin Jiang ,&nbsp;Weiming Shen\",\"doi\":\"10.1016/j.jfa.2024.110566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study asymptotic behaviors of solutions to the Loewner-Nirenberg problem in finite cones and establish optimal asymptotic expansions in terms of the corresponding solutions in infinite cones. The spherical domains over which cones are formed are allowed to have singularities. An elliptic operator on such spherical domains with coefficients singular on the boundary plays an important role. Due to the singularity of the spherical domains, extra care is needed for the study of the global regularity of the eigenfunctions and solutions of the associated singular Dirichlet problem.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624002544\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624002544","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了有限锥体中 Loewner-Nirenberg 问题解的渐近行为,并根据无限锥体中的相应解建立了最优渐近展开。形成圆锥的球面域允许存在奇点。这种球形域上的椭圆算子在边界上的奇异系数起着重要作用。由于球面域的奇异性,在研究相关奇异 Dirichlet 问题的特征函数和解的全局正则性时需要格外小心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Loewner-Nirenberg problem in cones

We study asymptotic behaviors of solutions to the Loewner-Nirenberg problem in finite cones and establish optimal asymptotic expansions in terms of the corresponding solutions in infinite cones. The spherical domains over which cones are formed are allowed to have singularities. An elliptic operator on such spherical domains with coefficients singular on the boundary plays an important role. Due to the singularity of the spherical domains, extra care is needed for the study of the global regularity of the eigenfunctions and solutions of the associated singular Dirichlet problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信