{"title":"基于沙猫优化算法的多策略改进型异构边缘计算环境工作流调度机制","authors":"P. Jayalakshmi, S.S. Subashka Ramesh","doi":"10.1016/j.suscom.2024.101014","DOIUrl":null,"url":null,"abstract":"<div><p>Edge computing is one of the predominant technologies which facilitates the option of bringing out the computing resources closer to the location of the end users when they are utilized by them. This facility offered by edge computing technology need to reduce the utilization of network bandwidth and response time with respect to the user’s workflow. In this paper, Multi-Strategy Improved Sand Cat Swarm Optimisation Algorithm (MSISCSOA)-based workflow scheduling mechanism is proposed for handling the challenges of workflow scheduling in cloud-edge computing environment. The core objective of this MSISCSOA-based workflow scheduling algorithm targets on minimizing the execution latency and energy consumption to facilitate timely and on-demand end users’ satisfaction of resources. This MSISCSOA scheme is adopted with the improvement introduced using random variation and elite collaborative strategies, such that well-balanced the trade-off between exploration and exploitation is achieved. This improvement is introduced over Sand Cat Optimization Algorithm (SCOA) using the merits of dynamic random search and joint opposite selection strategies that accelerates the convergence of the algorithm with increased global optimization and searching efficiency. It specifically improved SCOA using random variation for escaping from the local point of optimality. It also used well distributed pareto fronts and population evolution multi-strategy that aids in searching solutions with maximized diversity. The simulation experiments conducted using the datasets of Montage, Cybershake, LIGO and SIPHT an average confirmed minimized execution latency of 21.38 % and energy consumptions of 19.56 %, better than the baseline Ant Colony Optimization Algorithm-Based Workflow Scheduling (IACOAWS), Quadratic Penalty Function-based Particle Swarm Optimization Algorithm (QPF-PSOA), Biogeography Optimization (BBO) Algorithm based Multi-Objective Task Scheduling (BBOAMOTS) and Different Evolution-based Task Clustering and Scheduling (DETCS) approaches used for comparative investigation.</p></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"43 ","pages":"Article 101014"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-strategy improved sand cat optimization algorithm-based workflow scheduling mechanism for heterogeneous edge computing environment\",\"authors\":\"P. Jayalakshmi, S.S. Subashka Ramesh\",\"doi\":\"10.1016/j.suscom.2024.101014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Edge computing is one of the predominant technologies which facilitates the option of bringing out the computing resources closer to the location of the end users when they are utilized by them. This facility offered by edge computing technology need to reduce the utilization of network bandwidth and response time with respect to the user’s workflow. In this paper, Multi-Strategy Improved Sand Cat Swarm Optimisation Algorithm (MSISCSOA)-based workflow scheduling mechanism is proposed for handling the challenges of workflow scheduling in cloud-edge computing environment. The core objective of this MSISCSOA-based workflow scheduling algorithm targets on minimizing the execution latency and energy consumption to facilitate timely and on-demand end users’ satisfaction of resources. This MSISCSOA scheme is adopted with the improvement introduced using random variation and elite collaborative strategies, such that well-balanced the trade-off between exploration and exploitation is achieved. This improvement is introduced over Sand Cat Optimization Algorithm (SCOA) using the merits of dynamic random search and joint opposite selection strategies that accelerates the convergence of the algorithm with increased global optimization and searching efficiency. It specifically improved SCOA using random variation for escaping from the local point of optimality. It also used well distributed pareto fronts and population evolution multi-strategy that aids in searching solutions with maximized diversity. The simulation experiments conducted using the datasets of Montage, Cybershake, LIGO and SIPHT an average confirmed minimized execution latency of 21.38 % and energy consumptions of 19.56 %, better than the baseline Ant Colony Optimization Algorithm-Based Workflow Scheduling (IACOAWS), Quadratic Penalty Function-based Particle Swarm Optimization Algorithm (QPF-PSOA), Biogeography Optimization (BBO) Algorithm based Multi-Objective Task Scheduling (BBOAMOTS) and Different Evolution-based Task Clustering and Scheduling (DETCS) approaches used for comparative investigation.</p></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"43 \",\"pages\":\"Article 101014\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537924000593\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537924000593","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Edge computing is one of the predominant technologies which facilitates the option of bringing out the computing resources closer to the location of the end users when they are utilized by them. This facility offered by edge computing technology need to reduce the utilization of network bandwidth and response time with respect to the user’s workflow. In this paper, Multi-Strategy Improved Sand Cat Swarm Optimisation Algorithm (MSISCSOA)-based workflow scheduling mechanism is proposed for handling the challenges of workflow scheduling in cloud-edge computing environment. The core objective of this MSISCSOA-based workflow scheduling algorithm targets on minimizing the execution latency and energy consumption to facilitate timely and on-demand end users’ satisfaction of resources. This MSISCSOA scheme is adopted with the improvement introduced using random variation and elite collaborative strategies, such that well-balanced the trade-off between exploration and exploitation is achieved. This improvement is introduced over Sand Cat Optimization Algorithm (SCOA) using the merits of dynamic random search and joint opposite selection strategies that accelerates the convergence of the algorithm with increased global optimization and searching efficiency. It specifically improved SCOA using random variation for escaping from the local point of optimality. It also used well distributed pareto fronts and population evolution multi-strategy that aids in searching solutions with maximized diversity. The simulation experiments conducted using the datasets of Montage, Cybershake, LIGO and SIPHT an average confirmed minimized execution latency of 21.38 % and energy consumptions of 19.56 %, better than the baseline Ant Colony Optimization Algorithm-Based Workflow Scheduling (IACOAWS), Quadratic Penalty Function-based Particle Swarm Optimization Algorithm (QPF-PSOA), Biogeography Optimization (BBO) Algorithm based Multi-Objective Task Scheduling (BBOAMOTS) and Different Evolution-based Task Clustering and Scheduling (DETCS) approaches used for comparative investigation.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.