用于高度可扩展的蛋白质纳米粒子流动合成的自助台式设备

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Egor S. Korenkov , Vladimir R. Cherkasov , Maxim P. Nikitin
{"title":"用于高度可扩展的蛋白质纳米粒子流动合成的自助台式设备","authors":"Egor S. Korenkov ,&nbsp;Vladimir R. Cherkasov ,&nbsp;Maxim P. Nikitin","doi":"10.1016/j.ohx.2024.e00554","DOIUrl":null,"url":null,"abstract":"<div><p>Synthesis of nanoparticles is typically carried out in batch procedures, which offer limited control of parameters, and a narrow range of possible batch volumes. In contrast, flow synthesis systems, usually having a microfluidic chip as a crucial part, are devoid of these drawbacks. However, large scale devices – millifluidic systems – may offer several advantages over microfluidic systems, such as easier and cheaper production, enhanced throughput, and reduced channel clogging. Here we report a millifluidic system for the generation of protein nanoparticles, using the flow format of the original swift thermal formation technology (STF), which can process batch volume ranging from 100 µl to any practically significant amount. Capabilities of the system are demonstrated with model synthesis of Epirubicin-encapsulated BSA nanoparticles. A better degree of scalability of the synthesis over batch procedure is shown: with a 10-fold working volume increase, hydrodynamic diameter and loading capacity changed by only 10 % and 1 % respectively, compared to 60 % and 30 % for the batch synthesis. Additionally, we provide all engineering drawings, electrical circuits, programming code and nuances of assembly and operation, so that our findings can be easily reproduced. The ease of construction of the device and the superior characteristics of the resulting nanoparticles compared to the batch method indicate application potential in both the biomedical research and industrial spheres.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000488/pdfft?md5=30d6cd180a9940a8d5dff82c42e16daa&pid=1-s2.0-S2468067224000488-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A do-it-yourself benchtop device for highly scalable flow synthesis of protein-based nanoparticles\",\"authors\":\"Egor S. Korenkov ,&nbsp;Vladimir R. Cherkasov ,&nbsp;Maxim P. Nikitin\",\"doi\":\"10.1016/j.ohx.2024.e00554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Synthesis of nanoparticles is typically carried out in batch procedures, which offer limited control of parameters, and a narrow range of possible batch volumes. In contrast, flow synthesis systems, usually having a microfluidic chip as a crucial part, are devoid of these drawbacks. However, large scale devices – millifluidic systems – may offer several advantages over microfluidic systems, such as easier and cheaper production, enhanced throughput, and reduced channel clogging. Here we report a millifluidic system for the generation of protein nanoparticles, using the flow format of the original swift thermal formation technology (STF), which can process batch volume ranging from 100 µl to any practically significant amount. Capabilities of the system are demonstrated with model synthesis of Epirubicin-encapsulated BSA nanoparticles. A better degree of scalability of the synthesis over batch procedure is shown: with a 10-fold working volume increase, hydrodynamic diameter and loading capacity changed by only 10 % and 1 % respectively, compared to 60 % and 30 % for the batch synthesis. Additionally, we provide all engineering drawings, electrical circuits, programming code and nuances of assembly and operation, so that our findings can be easily reproduced. The ease of construction of the device and the superior characteristics of the resulting nanoparticles compared to the batch method indicate application potential in both the biomedical research and industrial spheres.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000488/pdfft?md5=30d6cd180a9940a8d5dff82c42e16daa&pid=1-s2.0-S2468067224000488-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

纳米粒子的合成通常采用批量程序,这种程序对参数的控制有限,而且可能的批量范围也很窄。相比之下,通常以微流体芯片为关键部分的流动合成系统则不存在这些缺点。然而,与微流控系统相比,大规模装置--毫流体系统--可能具有一些优势,如生产更容易、成本更低、吞吐量更大、通道堵塞更少等。在此,我们报告了一种用于生成蛋白质纳米颗粒的毫流体系统,该系统采用了最初的快速热形成技术(STF)的流动形式,可以处理从 100 µl 到任何实际数量的批量。该系统的能力通过表柔比星包裹 BSA 纳米粒子的模型合成得到了验证。与批量合成相比,该系统具有更好的可扩展性:在工作容量增加 10 倍的情况下,流体力学直径和装载能力分别只改变了 10% 和 1%,而批量合成则分别改变了 60% 和 30%。此外,我们还提供了所有的工程图纸、电路、编程代码以及组装和操作的细微差别,因此我们的研究成果可以很容易地复制。与批量法相比,该装置易于制造,而且所产生的纳米粒子具有更优越的特性,这表明它在生物医学研究和工业领域都具有应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A do-it-yourself benchtop device for highly scalable flow synthesis of protein-based nanoparticles

A do-it-yourself benchtop device for highly scalable flow synthesis of protein-based nanoparticles

Synthesis of nanoparticles is typically carried out in batch procedures, which offer limited control of parameters, and a narrow range of possible batch volumes. In contrast, flow synthesis systems, usually having a microfluidic chip as a crucial part, are devoid of these drawbacks. However, large scale devices – millifluidic systems – may offer several advantages over microfluidic systems, such as easier and cheaper production, enhanced throughput, and reduced channel clogging. Here we report a millifluidic system for the generation of protein nanoparticles, using the flow format of the original swift thermal formation technology (STF), which can process batch volume ranging from 100 µl to any practically significant amount. Capabilities of the system are demonstrated with model synthesis of Epirubicin-encapsulated BSA nanoparticles. A better degree of scalability of the synthesis over batch procedure is shown: with a 10-fold working volume increase, hydrodynamic diameter and loading capacity changed by only 10 % and 1 % respectively, compared to 60 % and 30 % for the batch synthesis. Additionally, we provide all engineering drawings, electrical circuits, programming code and nuances of assembly and operation, so that our findings can be easily reproduced. The ease of construction of the device and the superior characteristics of the resulting nanoparticles compared to the batch method indicate application potential in both the biomedical research and industrial spheres.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信