{"title":"聚焦离子束制造高分辨率电化学-电致发光耦合双极纳米电极阵列传感器","authors":"Guopeng Li , Rui Hao","doi":"10.1016/j.snr.2024.100220","DOIUrl":null,"url":null,"abstract":"<div><p>High temporal and spatial resolution electrochemical sensor arrays can greatly benefit various parallel sensing applications. Herein, we provide a simple method for the controlled and scaled fabrication of bipolar nanoelectrode arrays (BPnEAs) for high-resolution electrochemical sensing applications. BPnEAs are prepared on silicon nitride film windows through the dual-beam FIB nanofabrication technique. Coupling a conventional electrochemical redox reaction with a tris (2,20-bipyridyl) ruthenium /2-(dibutylamino)ethanol electrochemiluminescence (ECL) system, which is based on a high-viscosity solvent to reduce molecular diffusion, allows for the reporting of conventional electrochemical redox processes with high spatial and temporal resolution. The use of the BPnEA-ECL sensor is demonstrated on 10 × 10 Pt or C BPnEAs for monitoring the reduction of 0.5 M H<sub>2</sub>SO<sub>4</sub>. BPnEA-ECL sensors containing different electrode materials (Pt and C) are reported for the first time and are used to monitor the reduction of 0.5 M H<sub>2</sub>SO<sub>4</sub>, thus revealing the difference in electrocatalytic capacities between Pt and C. Subsequently, we reveal the outstanding capabilities of the BPnEA-ECL system for catalyst screening.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100220"},"PeriodicalIF":6.5000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000365/pdfft?md5=9822c1b2795876cb727ed46899430a88&pid=1-s2.0-S2666053924000365-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Focused ion beam fabrication of high-resolution electrochemical-electroluminescence coupling bipolar nanoelectrode array sensors\",\"authors\":\"Guopeng Li , Rui Hao\",\"doi\":\"10.1016/j.snr.2024.100220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High temporal and spatial resolution electrochemical sensor arrays can greatly benefit various parallel sensing applications. Herein, we provide a simple method for the controlled and scaled fabrication of bipolar nanoelectrode arrays (BPnEAs) for high-resolution electrochemical sensing applications. BPnEAs are prepared on silicon nitride film windows through the dual-beam FIB nanofabrication technique. Coupling a conventional electrochemical redox reaction with a tris (2,20-bipyridyl) ruthenium /2-(dibutylamino)ethanol electrochemiluminescence (ECL) system, which is based on a high-viscosity solvent to reduce molecular diffusion, allows for the reporting of conventional electrochemical redox processes with high spatial and temporal resolution. The use of the BPnEA-ECL sensor is demonstrated on 10 × 10 Pt or C BPnEAs for monitoring the reduction of 0.5 M H<sub>2</sub>SO<sub>4</sub>. BPnEA-ECL sensors containing different electrode materials (Pt and C) are reported for the first time and are used to monitor the reduction of 0.5 M H<sub>2</sub>SO<sub>4</sub>, thus revealing the difference in electrocatalytic capacities between Pt and C. Subsequently, we reveal the outstanding capabilities of the BPnEA-ECL system for catalyst screening.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"8 \",\"pages\":\"Article 100220\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000365/pdfft?md5=9822c1b2795876cb727ed46899430a88&pid=1-s2.0-S2666053924000365-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
高时间和空间分辨率的电化学传感器阵列可大大有利于各种平行传感应用。在此,我们提供了一种用于高分辨率电化学传感应用的双极纳米电极阵列(BPnEAs)的可控和规模化制造的简单方法。BPnEAs 是通过双束 FIB 纳米制造技术在氮化硅薄膜窗口上制备的。将传统的电化学氧化还原反应与三(2,20-联吡啶)钌/2-(二丁基氨基)乙醇电化学发光(ECL)系统耦合(该系统基于高粘度溶剂以减少分子扩散),可报告具有高空间和时间分辨率的传统电化学氧化还原过程。我们在 10 × 10 Pt 或 C BPnEA 上演示了如何使用 BPnEA-ECL 传感器监测 0.5 M H2SO4 的还原过程。我们首次报道了含有不同电极材料(铂和碳)的 BPnEA-ECL 传感器,并将其用于监测 0.5 M H2SO4 的还原,从而揭示了铂和碳在电催化能力上的差异。
Focused ion beam fabrication of high-resolution electrochemical-electroluminescence coupling bipolar nanoelectrode array sensors
High temporal and spatial resolution electrochemical sensor arrays can greatly benefit various parallel sensing applications. Herein, we provide a simple method for the controlled and scaled fabrication of bipolar nanoelectrode arrays (BPnEAs) for high-resolution electrochemical sensing applications. BPnEAs are prepared on silicon nitride film windows through the dual-beam FIB nanofabrication technique. Coupling a conventional electrochemical redox reaction with a tris (2,20-bipyridyl) ruthenium /2-(dibutylamino)ethanol electrochemiluminescence (ECL) system, which is based on a high-viscosity solvent to reduce molecular diffusion, allows for the reporting of conventional electrochemical redox processes with high spatial and temporal resolution. The use of the BPnEA-ECL sensor is demonstrated on 10 × 10 Pt or C BPnEAs for monitoring the reduction of 0.5 M H2SO4. BPnEA-ECL sensors containing different electrode materials (Pt and C) are reported for the first time and are used to monitor the reduction of 0.5 M H2SO4, thus revealing the difference in electrocatalytic capacities between Pt and C. Subsequently, we reveal the outstanding capabilities of the BPnEA-ECL system for catalyst screening.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.