强单模序列与赫克式同构

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Su-Ping Cui , Hai-Xing Du , Nancy S.S. Gu
{"title":"强单模序列与赫克式同构","authors":"Su-Ping Cui ,&nbsp;Hai-Xing Du ,&nbsp;Nancy S.S. Gu","doi":"10.1016/j.aam.2024.102738","DOIUrl":null,"url":null,"abstract":"<div><p>A strongly unimodal sequence of size <em>n</em> is a sequence of integers <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math></span> satisfying the following conditions:<span><span><span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mo>⋯</mo><mo>&lt;</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>&gt;</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>&gt;</mo><mo>⋯</mo><mo>&gt;</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>&gt;</mo><mn>0</mn><mspace></mspace><mtext>and</mtext><mspace></mspace><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mi>n</mi><mo>,</mo></math></span></span></span> for a certain index <em>k</em>, and we usually define its rank as <span><math><mi>s</mi><mo>−</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></math></span>. Let <span><math><mi>u</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> be the number of strongly unimodal sequences of size <em>n</em> with rank <em>m</em>, and the generating function for <span><math><mi>u</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> is written as<span><span><span><math><mi>U</mi><mo>(</mo><mi>z</mi><mo>;</mo><mi>q</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></munder><mi>u</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>z</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>.</mo></math></span></span></span> Recently, Chen and Garvan established some Hecke-type identities for the third order mock theta function <span><math><mi>ψ</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mi>U</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, which are the specializations of <span><math><mi>U</mi><mo>(</mo><mi>z</mi><mo>;</mo><mi>q</mi><mo>)</mo></math></span>, as advocated by <span><math><mi>ψ</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><mi>U</mi><mo>(</mo><mo>±</mo><mi>i</mi><mo>;</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mi>U</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>;</mo><mi>q</mi><mo>)</mo></math></span>. Meanwhile, they inquired whether these Hecke-type identities could be proved via the Bailey pair machinery. In this paper, we not only answer the inquiry of Chen and Garvan in the affirmative, but offer more instances in a broader setting, with, for example, some classical third order mock theta functions due to Ramanujan involved. Furthermore, we extend the Hecke-type identities into multiple series identities. Our work is built upon a handful of Bailey pairs and conjugate Bailey pairs.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly unimodal sequences and Hecke-type identities\",\"authors\":\"Su-Ping Cui ,&nbsp;Hai-Xing Du ,&nbsp;Nancy S.S. Gu\",\"doi\":\"10.1016/j.aam.2024.102738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A strongly unimodal sequence of size <em>n</em> is a sequence of integers <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math></span> satisfying the following conditions:<span><span><span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mo>⋯</mo><mo>&lt;</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>&gt;</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>&gt;</mo><mo>⋯</mo><mo>&gt;</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>&gt;</mo><mn>0</mn><mspace></mspace><mtext>and</mtext><mspace></mspace><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mi>n</mi><mo>,</mo></math></span></span></span> for a certain index <em>k</em>, and we usually define its rank as <span><math><mi>s</mi><mo>−</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></math></span>. Let <span><math><mi>u</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> be the number of strongly unimodal sequences of size <em>n</em> with rank <em>m</em>, and the generating function for <span><math><mi>u</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> is written as<span><span><span><math><mi>U</mi><mo>(</mo><mi>z</mi><mo>;</mo><mi>q</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></munder><mi>u</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>z</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>.</mo></math></span></span></span> Recently, Chen and Garvan established some Hecke-type identities for the third order mock theta function <span><math><mi>ψ</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mi>U</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, which are the specializations of <span><math><mi>U</mi><mo>(</mo><mi>z</mi><mo>;</mo><mi>q</mi><mo>)</mo></math></span>, as advocated by <span><math><mi>ψ</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><mi>U</mi><mo>(</mo><mo>±</mo><mi>i</mi><mo>;</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mi>U</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>;</mo><mi>q</mi><mo>)</mo></math></span>. Meanwhile, they inquired whether these Hecke-type identities could be proved via the Bailey pair machinery. In this paper, we not only answer the inquiry of Chen and Garvan in the affirmative, but offer more instances in a broader setting, with, for example, some classical third order mock theta functions due to Ramanujan involved. Furthermore, we extend the Hecke-type identities into multiple series identities. Our work is built upon a handful of Bailey pairs and conjugate Bailey pairs.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000708\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000708","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

大小为 n 的强单峰序列是满足以下条件的整数序列 {aj}j=1s: 0<a1<a2<⋯<ak>ak+1>⋯>as>0anda1+a2+⋯+as=n, 对于某一指数 k,我们通常定义其阶为 s-2k+1。设 u(m,n) 是秩为 m 的大小为 n 的强单峰序列的个数,u(m,n) 的生成函数写为 U(z;q):=∑m,nu(m,n)zmqn。最近,Chen 和 Garvan 为三阶模拟 Theta 函数 ψ(q) 和 U(q) 建立了一些赫克式等式,它们是 U(z;q) 的特化,如 ψ(q)=U(±i;q) 和 U(q)=U(1;q) 所主张的。同时,他们还提出了是否可以通过贝利配对机制来证明这些赫克类同性的问题。在本文中,我们不仅肯定地回答了 Chen 和 Garvan 的问题,而且在更广阔的背景下提供了更多实例,例如,其中涉及拉马努扬提出的一些经典三阶模拟 Theta 函数。此外,我们还将赫克型判据扩展为多序列判据。我们的工作建立在少量贝利对和共轭贝利对的基础上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strongly unimodal sequences and Hecke-type identities

A strongly unimodal sequence of size n is a sequence of integers {aj}j=1s satisfying the following conditions:0<a1<a2<<ak>ak+1>>as>0anda1+a2++as=n, for a certain index k, and we usually define its rank as s2k+1. Let u(m,n) be the number of strongly unimodal sequences of size n with rank m, and the generating function for u(m,n) is written asU(z;q):=m,nu(m,n)zmqn. Recently, Chen and Garvan established some Hecke-type identities for the third order mock theta function ψ(q) and U(q), which are the specializations of U(z;q), as advocated by ψ(q)=U(±i;q) and U(q)=U(1;q). Meanwhile, they inquired whether these Hecke-type identities could be proved via the Bailey pair machinery. In this paper, we not only answer the inquiry of Chen and Garvan in the affirmative, but offer more instances in a broader setting, with, for example, some classical third order mock theta functions due to Ramanujan involved. Furthermore, we extend the Hecke-type identities into multiple series identities. Our work is built upon a handful of Bailey pairs and conjugate Bailey pairs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信