Weixin Wang , Rui Gao , Lin Zhang , Zhongchao Wang , Jiahui Sun , Lei Luo , Min Pan , Miaofang Hong , Jianming Wu , Qibing Mei , Ke Tong , Yini Wang , Lingyan Qiao , Fei Tong
{"title":"应用于急性肾损伤的燃料推进式纳米电机","authors":"Weixin Wang , Rui Gao , Lin Zhang , Zhongchao Wang , Jiahui Sun , Lei Luo , Min Pan , Miaofang Hong , Jianming Wu , Qibing Mei , Ke Tong , Yini Wang , Lingyan Qiao , Fei Tong","doi":"10.1016/j.pscia.2024.100044","DOIUrl":null,"url":null,"abstract":"<div><p>Acute kidney injury (AKI) is characterized by a rapid loss of renal metabolic function and a high mortality rate. Although significant progress has been made in developing targeted drugs for AKI treatment, issues such as inadequate antioxidant effects and poor renal enrichment efficiency remain. Nanomotors can enhance drug delivery efficiency in AKI treatments through self-propulsion in the microenvironment or via external stimuli. We reviewed recent progress in the targeted treatment of AKI with nanomotors, focusing on their contribution to targeted drug delivery at different stages and combined treatments. Current limitations and future development directions are also discussed.</p></div>","PeriodicalId":101012,"journal":{"name":"Pharmaceutical Science Advances","volume":"2 ","pages":"Article 100044"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773216924000102/pdfft?md5=4504c164042e6d4a1599cfcc3339045c&pid=1-s2.0-S2773216924000102-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fuel-propelled nanomotors for acute kidney injury applications\",\"authors\":\"Weixin Wang , Rui Gao , Lin Zhang , Zhongchao Wang , Jiahui Sun , Lei Luo , Min Pan , Miaofang Hong , Jianming Wu , Qibing Mei , Ke Tong , Yini Wang , Lingyan Qiao , Fei Tong\",\"doi\":\"10.1016/j.pscia.2024.100044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acute kidney injury (AKI) is characterized by a rapid loss of renal metabolic function and a high mortality rate. Although significant progress has been made in developing targeted drugs for AKI treatment, issues such as inadequate antioxidant effects and poor renal enrichment efficiency remain. Nanomotors can enhance drug delivery efficiency in AKI treatments through self-propulsion in the microenvironment or via external stimuli. We reviewed recent progress in the targeted treatment of AKI with nanomotors, focusing on their contribution to targeted drug delivery at different stages and combined treatments. Current limitations and future development directions are also discussed.</p></div>\",\"PeriodicalId\":101012,\"journal\":{\"name\":\"Pharmaceutical Science Advances\",\"volume\":\"2 \",\"pages\":\"Article 100044\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773216924000102/pdfft?md5=4504c164042e6d4a1599cfcc3339045c&pid=1-s2.0-S2773216924000102-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773216924000102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773216924000102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
急性肾损伤(AKI)的特点是肾脏代谢功能迅速丧失和高死亡率。尽管在开发治疗 AKI 的靶向药物方面取得了重大进展,但抗氧化作用不足和肾脏富集效率低等问题依然存在。纳米马达可通过在微环境中的自我推进或外部刺激来提高 AKI 治疗中的给药效率。我们回顾了利用纳米马达靶向治疗 AKI 的最新进展,重点介绍了纳米马达在不同阶段靶向给药和联合治疗中的贡献。我们还讨论了目前的局限性和未来的发展方向。
Fuel-propelled nanomotors for acute kidney injury applications
Acute kidney injury (AKI) is characterized by a rapid loss of renal metabolic function and a high mortality rate. Although significant progress has been made in developing targeted drugs for AKI treatment, issues such as inadequate antioxidant effects and poor renal enrichment efficiency remain. Nanomotors can enhance drug delivery efficiency in AKI treatments through self-propulsion in the microenvironment or via external stimuli. We reviewed recent progress in the targeted treatment of AKI with nanomotors, focusing on their contribution to targeted drug delivery at different stages and combined treatments. Current limitations and future development directions are also discussed.