{"title":"天然河道流的各向异性湍流建模:有限元法数值方法","authors":"R.N. Silva, F.R.T. Camargo, R.C.F. Mendes, R.M. Bertolina, M.M. Nunes, T.F. Oliveira, A.C.P. Brasil Junior","doi":"10.1016/j.flowmeasinst.2024.102649","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we propose a numerical model aimed at improving the understanding and prediction of flow velocities in natural channels. This model specifically focuses on the challenges presented by anisotropic turbulence and bottom roughness. By incorporating the mixing length concept into an algebraic turbulence model and employing the finite element method with Streamline-Upwind/Petrov–Galerkin (SUPG) stabilization, our model seeks to refine the simulation of axial velocity distribution and secondary motions. Validation was achieved through Acoustic Doppler Current Profiler (ADCP) measurements in three sections of the Canal do Rodeador, showing our model’s predictions of discharge and average velocity to have a deviation of approximately 9.34% from experimental data. The results underline the significance of secondary currents and turbulence anisotropy in shaping channel flow behaviors, offering new insights into the interactions between flow characteristics and channel bed features. This model stands out as a robust tool for hydraulic structure design and hydrokinetic potential evaluation, providing a non-intrusive, cost-effective alternative to traditional methods.</p></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"98 ","pages":"Article 102649"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic turbulence modeling for natural channel flow: A numerical approach with finite element method\",\"authors\":\"R.N. Silva, F.R.T. Camargo, R.C.F. Mendes, R.M. Bertolina, M.M. Nunes, T.F. Oliveira, A.C.P. Brasil Junior\",\"doi\":\"10.1016/j.flowmeasinst.2024.102649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we propose a numerical model aimed at improving the understanding and prediction of flow velocities in natural channels. This model specifically focuses on the challenges presented by anisotropic turbulence and bottom roughness. By incorporating the mixing length concept into an algebraic turbulence model and employing the finite element method with Streamline-Upwind/Petrov–Galerkin (SUPG) stabilization, our model seeks to refine the simulation of axial velocity distribution and secondary motions. Validation was achieved through Acoustic Doppler Current Profiler (ADCP) measurements in three sections of the Canal do Rodeador, showing our model’s predictions of discharge and average velocity to have a deviation of approximately 9.34% from experimental data. The results underline the significance of secondary currents and turbulence anisotropy in shaping channel flow behaviors, offering new insights into the interactions between flow characteristics and channel bed features. This model stands out as a robust tool for hydraulic structure design and hydrokinetic potential evaluation, providing a non-intrusive, cost-effective alternative to traditional methods.</p></div>\",\"PeriodicalId\":50440,\"journal\":{\"name\":\"Flow Measurement and Instrumentation\",\"volume\":\"98 \",\"pages\":\"Article 102649\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow Measurement and Instrumentation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955598624001298\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598624001298","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Anisotropic turbulence modeling for natural channel flow: A numerical approach with finite element method
In this study, we propose a numerical model aimed at improving the understanding and prediction of flow velocities in natural channels. This model specifically focuses on the challenges presented by anisotropic turbulence and bottom roughness. By incorporating the mixing length concept into an algebraic turbulence model and employing the finite element method with Streamline-Upwind/Petrov–Galerkin (SUPG) stabilization, our model seeks to refine the simulation of axial velocity distribution and secondary motions. Validation was achieved through Acoustic Doppler Current Profiler (ADCP) measurements in three sections of the Canal do Rodeador, showing our model’s predictions of discharge and average velocity to have a deviation of approximately 9.34% from experimental data. The results underline the significance of secondary currents and turbulence anisotropy in shaping channel flow behaviors, offering new insights into the interactions between flow characteristics and channel bed features. This model stands out as a robust tool for hydraulic structure design and hydrokinetic potential evaluation, providing a non-intrusive, cost-effective alternative to traditional methods.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.