Apurva Badkas , Maria Pires Pacheco , Thomas Sauter
{"title":"代谢性疾病和糖尿病的网络建模方法","authors":"Apurva Badkas , Maria Pires Pacheco , Thomas Sauter","doi":"10.1016/j.coisb.2024.100530","DOIUrl":null,"url":null,"abstract":"<div><p>Metabolic diseases (MD) are amenable to network-based modeling frameworks, given the systemic perturbations induced by disrupted molecular mechanisms. We present here a brief overview of network modeling methods applied to inborn errors of metabolism (IEM), systemic metabolic conditions (mainly diabetes), and metabolism-related inflammation and autoimmune disorders. Clinical diagnosis and identification of causal agents in IEMs and uncovering the multifactorial mechanisms underlying the development of diabetes and other systemic metabolic diseases are the main challenges being addressed. The review also highlights some of the studies undertaken to investigate the role of the gut microbiome in MD, especially in diabetes. While the network frameworks employed in different modeling approaches have provided novel insights, some technique-specific limitations and overall gaps in general research trends need further attention.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245231002400026X/pdfft?md5=3af7589f4c37de8917481422dc190763&pid=1-s2.0-S245231002400026X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Network modeling approaches for metabolic diseases and diabetes\",\"authors\":\"Apurva Badkas , Maria Pires Pacheco , Thomas Sauter\",\"doi\":\"10.1016/j.coisb.2024.100530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metabolic diseases (MD) are amenable to network-based modeling frameworks, given the systemic perturbations induced by disrupted molecular mechanisms. We present here a brief overview of network modeling methods applied to inborn errors of metabolism (IEM), systemic metabolic conditions (mainly diabetes), and metabolism-related inflammation and autoimmune disorders. Clinical diagnosis and identification of causal agents in IEMs and uncovering the multifactorial mechanisms underlying the development of diabetes and other systemic metabolic diseases are the main challenges being addressed. The review also highlights some of the studies undertaken to investigate the role of the gut microbiome in MD, especially in diabetes. While the network frameworks employed in different modeling approaches have provided novel insights, some technique-specific limitations and overall gaps in general research trends need further attention.</p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S245231002400026X/pdfft?md5=3af7589f4c37de8917481422dc190763&pid=1-s2.0-S245231002400026X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245231002400026X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245231002400026X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Network modeling approaches for metabolic diseases and diabetes
Metabolic diseases (MD) are amenable to network-based modeling frameworks, given the systemic perturbations induced by disrupted molecular mechanisms. We present here a brief overview of network modeling methods applied to inborn errors of metabolism (IEM), systemic metabolic conditions (mainly diabetes), and metabolism-related inflammation and autoimmune disorders. Clinical diagnosis and identification of causal agents in IEMs and uncovering the multifactorial mechanisms underlying the development of diabetes and other systemic metabolic diseases are the main challenges being addressed. The review also highlights some of the studies undertaken to investigate the role of the gut microbiome in MD, especially in diabetes. While the network frameworks employed in different modeling approaches have provided novel insights, some technique-specific limitations and overall gaps in general research trends need further attention.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution