{"title":"涉及奇异信号依赖性运动和逻辑源的趋化消耗模型的全局经典解法","authors":"Liangchen Wang, Rui Huang","doi":"10.1016/j.nonrwa.2024.104174","DOIUrl":null,"url":null,"abstract":"<div><p>This work considers the Keller–Segel consumption system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mrow><mo>(</mo><mi>u</mi><msup><mrow><mi>v</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mo>)</mo></mrow><mo>+</mo><mi>a</mi><mi>u</mi><mo>−</mo><mi>b</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>u</mi><mi>v</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under homogeneous Neumann boundary conditions in a smooth bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, where the parameters <span><math><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>b</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>γ</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, the initial data <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>0</mn><mrow><mo>(</mo><mo>⁄</mo><mo>≡</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> in <span><math><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> with <span><span><span><math><mrow><msub><mrow><mo>‖</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo><</mo><mo>exp</mo><mfenced><mrow><mfrac><mrow><mo>ln</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow><mrow><mi>α</mi></mrow></mfrac><mi>⋅</mi><mfrac><mrow><mn>8</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></mfrac></mrow></mfenced><mo>.</mo></mrow></math></span></span></span>It is shown that if one of the following cases holds:</p><p>(i) <span><math><mrow><mi>γ</mi><mo>></mo><mn>2</mn></mrow></math></span>;</p><p>(ii) <span><math><mrow><mi>γ</mi><mo>=</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>b</mi><mo>></mo><mfrac><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span>,</p><p>then the corresponding initial–boundary value problem possesses global classical solutions.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global classical solutions to a chemotaxis consumption model involving singularly signal-dependent motility and logistic source\",\"authors\":\"Liangchen Wang, Rui Huang\",\"doi\":\"10.1016/j.nonrwa.2024.104174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work considers the Keller–Segel consumption system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mrow><mo>(</mo><mi>u</mi><msup><mrow><mi>v</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mo>)</mo></mrow><mo>+</mo><mi>a</mi><mi>u</mi><mo>−</mo><mi>b</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>u</mi><mi>v</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under homogeneous Neumann boundary conditions in a smooth bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, where the parameters <span><math><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>b</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>γ</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, the initial data <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>0</mn><mrow><mo>(</mo><mo>⁄</mo><mo>≡</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> in <span><math><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> with <span><span><span><math><mrow><msub><mrow><mo>‖</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo><</mo><mo>exp</mo><mfenced><mrow><mfrac><mrow><mo>ln</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow><mrow><mi>α</mi></mrow></mfrac><mi>⋅</mi><mfrac><mrow><mn>8</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></mfrac></mrow></mfenced><mo>.</mo></mrow></math></span></span></span>It is shown that if one of the following cases holds:</p><p>(i) <span><math><mrow><mi>γ</mi><mo>></mo><mn>2</mn></mrow></math></span>;</p><p>(ii) <span><math><mrow><mi>γ</mi><mo>=</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>b</mi><mo>></mo><mfrac><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span>,</p><p>then the corresponding initial–boundary value problem possesses global classical solutions.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001147\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001147","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Global classical solutions to a chemotaxis consumption model involving singularly signal-dependent motility and logistic source
This work considers the Keller–Segel consumption system under homogeneous Neumann boundary conditions in a smooth bounded domain , where the parameters , , and , the initial data , , and in with It is shown that if one of the following cases holds:
(i) ;
(ii) and ,
then the corresponding initial–boundary value problem possesses global classical solutions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.