通过测量电子个人剂量计中电阻器的热释光进行定量辐射剂量测定

IF 1.6 3区 物理与天体物理 Q2 NUCLEAR SCIENCE & TECHNOLOGY
Hyunseok Lee , Sung-Joon Ye , Hong Suk Kim , Ah Reum Kim , Hyungjoon Yu , Myung-Jin Kim
{"title":"通过测量电子个人剂量计中电阻器的热释光进行定量辐射剂量测定","authors":"Hyunseok Lee ,&nbsp;Sung-Joon Ye ,&nbsp;Hong Suk Kim ,&nbsp;Ah Reum Kim ,&nbsp;Hyungjoon Yu ,&nbsp;Myung-Jin Kim","doi":"10.1016/j.radmeas.2024.107226","DOIUrl":null,"url":null,"abstract":"<div><p>A study on retrospective dosimetry was performed using electronic personal dosimeters (EPDs) for reconstructing doses received by radiographic testing workers. The dosimetric properties of the thermoluminescence (TL) peak in the temperature range of 100–200 °C were investigated by measuring the TL of the resistors extracted from the EPDs in a darkroom environment. Results showed that this TL peak exhibited optimal dosimetric properties, with a minimum detectable dose as low as 13 mGy. To calculate the absorbed dose using the resistors, a simplified single aliquot regenerative (SAR) dose method using the TL peak was employed. The zero dose of the commercial EPD (model CLOVER) was determined to be 58 ± 72 mGy through the random selection of six EPDs. Additionally, a dose overestimation correction factor for compensating rapid sensitivity changes after TL measurement of the natural sample was calculated as 1.73 ± 0.09. Furthermore, it was observed that the TL signal faded exponentially to approximately 60% over a period of 12 weeks. Subsequently, retrospective dosimetry was performed by irradiating EPDs with a standard gamma ray dose of 1 Gy. The radiation exposure dose calculated from the TL peak of the resistors was found to be approximately 10% lower. These findings showed that the retrospective dosimetry with EPD can be utilized for accurately estimating the radiation exposure dose.</p></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative radiation dosimetry by measuring thermoluminescence of resistors in electronic personal dosimeters\",\"authors\":\"Hyunseok Lee ,&nbsp;Sung-Joon Ye ,&nbsp;Hong Suk Kim ,&nbsp;Ah Reum Kim ,&nbsp;Hyungjoon Yu ,&nbsp;Myung-Jin Kim\",\"doi\":\"10.1016/j.radmeas.2024.107226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A study on retrospective dosimetry was performed using electronic personal dosimeters (EPDs) for reconstructing doses received by radiographic testing workers. The dosimetric properties of the thermoluminescence (TL) peak in the temperature range of 100–200 °C were investigated by measuring the TL of the resistors extracted from the EPDs in a darkroom environment. Results showed that this TL peak exhibited optimal dosimetric properties, with a minimum detectable dose as low as 13 mGy. To calculate the absorbed dose using the resistors, a simplified single aliquot regenerative (SAR) dose method using the TL peak was employed. The zero dose of the commercial EPD (model CLOVER) was determined to be 58 ± 72 mGy through the random selection of six EPDs. Additionally, a dose overestimation correction factor for compensating rapid sensitivity changes after TL measurement of the natural sample was calculated as 1.73 ± 0.09. Furthermore, it was observed that the TL signal faded exponentially to approximately 60% over a period of 12 weeks. Subsequently, retrospective dosimetry was performed by irradiating EPDs with a standard gamma ray dose of 1 Gy. The radiation exposure dose calculated from the TL peak of the resistors was found to be approximately 10% lower. These findings showed that the retrospective dosimetry with EPD can be utilized for accurately estimating the radiation exposure dose.</p></div>\",\"PeriodicalId\":21055,\"journal\":{\"name\":\"Radiation Measurements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Measurements\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350448724001744\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448724001744","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利用个人电子剂量计(EPDs)进行了一项回顾性剂量测定研究,以重建射线检测工作人员所接受的剂量。通过在暗室环境中测量从电子个人剂量仪中提取的电阻的热释光峰值,研究了温度范围在 100-200 ℃ 的热释光峰值的剂量学特性。结果表明,该 TL 峰具有最佳剂量测定特性,最小可检测剂量低至 13 mGy。为了计算电阻器的吸收剂量,采用了简化的单等分再生(SAR)剂量法,利用 TL 峰计算吸收剂量。通过随机选择六个 EPD,确定商用 EPD(型号 CLOVER)的零剂量为 58 ± 72 mGy。此外,为补偿天然样本 TL 测量后灵敏度的快速变化,计算出剂量高估修正系数为 1.73 ± 0.09。此外,还观察到 TL 信号在 12 周内呈指数式衰减至约 60%。随后,用 1 Gy 的标准伽马射线剂量照射 EPD,进行了追溯剂量测定。结果发现,根据电阻器的 TL 峰值计算出的辐照剂量降低了约 10%。这些研究结果表明,使用 EPD 进行追溯剂量测定可以准确估算辐照剂量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative radiation dosimetry by measuring thermoluminescence of resistors in electronic personal dosimeters

A study on retrospective dosimetry was performed using electronic personal dosimeters (EPDs) for reconstructing doses received by radiographic testing workers. The dosimetric properties of the thermoluminescence (TL) peak in the temperature range of 100–200 °C were investigated by measuring the TL of the resistors extracted from the EPDs in a darkroom environment. Results showed that this TL peak exhibited optimal dosimetric properties, with a minimum detectable dose as low as 13 mGy. To calculate the absorbed dose using the resistors, a simplified single aliquot regenerative (SAR) dose method using the TL peak was employed. The zero dose of the commercial EPD (model CLOVER) was determined to be 58 ± 72 mGy through the random selection of six EPDs. Additionally, a dose overestimation correction factor for compensating rapid sensitivity changes after TL measurement of the natural sample was calculated as 1.73 ± 0.09. Furthermore, it was observed that the TL signal faded exponentially to approximately 60% over a period of 12 weeks. Subsequently, retrospective dosimetry was performed by irradiating EPDs with a standard gamma ray dose of 1 Gy. The radiation exposure dose calculated from the TL peak of the resistors was found to be approximately 10% lower. These findings showed that the retrospective dosimetry with EPD can be utilized for accurately estimating the radiation exposure dose.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation Measurements
Radiation Measurements 工程技术-核科学技术
CiteScore
4.10
自引率
20.00%
发文量
116
审稿时长
48 days
期刊介绍: The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal. Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信