{"title":"MXenes (M2C) 将二氧化碳转化为燃料的电化学过程:第一原理研究","authors":"Md Muttakin Sarkar , Subhankar Choudhury , Abhijit Mandal , Sourav Mazumdar , Narendra Nath Ghosh , Asoke P. Chattopadhyay , Brindaban Roy , Nabajyoti Baildya","doi":"10.1016/j.nxsust.2024.100058","DOIUrl":null,"url":null,"abstract":"<div><p>Herein we have made a comprehensive analysis for the conversion of CO<sub>2</sub> to fuel (CH<sub>4</sub>) on two dimensional MXenes (M=Mo, Hf) of the type M<sub>2</sub>C. Evaluation of parameters like Mulliken charge, adsorption energy, bond angle and bond distance demonstrated that activation is more pronounced with Hf<sub>2</sub>C compared to Mo<sub>2</sub>C due to transfer of higher electron density to CO<sub>2</sub> in the former than in the latter case. CO<sub>2</sub> adsorbed M<sub>2</sub>C realizes large shift of valance and conduction band vis-a-vis free M<sub>2</sub>C, leading to substantial charge transfer from MXenes. The enhanced activation of CO<sub>2</sub> over Hf<sub>2</sub>C has been confirmed from the increased splitting of π and π* energy level of CO<sub>2</sub> for Hf<sub>2</sub>C compared to Mo<sub>2</sub>C. The dense electron localization contour maps further explained the ease of electron transfer to CO<sub>2</sub> involving Hf<sub>2</sub>C. Analysis of Gibbs free energy for successive steps for the conversion of CO<sub>2</sub> to CH<sub>4</sub> revealed that fuel conversion is more feasible with Hf<sub>2</sub>C over Mo<sub>2</sub>C.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"4 ","pages":"Article 100058"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000357/pdfft?md5=86ebbce2fcc6034b5d0182f63b364bff&pid=1-s2.0-S2949823624000357-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrochemical conversion of CO2 to fuel by MXenes (M2C): A first principles study\",\"authors\":\"Md Muttakin Sarkar , Subhankar Choudhury , Abhijit Mandal , Sourav Mazumdar , Narendra Nath Ghosh , Asoke P. Chattopadhyay , Brindaban Roy , Nabajyoti Baildya\",\"doi\":\"10.1016/j.nxsust.2024.100058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Herein we have made a comprehensive analysis for the conversion of CO<sub>2</sub> to fuel (CH<sub>4</sub>) on two dimensional MXenes (M=Mo, Hf) of the type M<sub>2</sub>C. Evaluation of parameters like Mulliken charge, adsorption energy, bond angle and bond distance demonstrated that activation is more pronounced with Hf<sub>2</sub>C compared to Mo<sub>2</sub>C due to transfer of higher electron density to CO<sub>2</sub> in the former than in the latter case. CO<sub>2</sub> adsorbed M<sub>2</sub>C realizes large shift of valance and conduction band vis-a-vis free M<sub>2</sub>C, leading to substantial charge transfer from MXenes. The enhanced activation of CO<sub>2</sub> over Hf<sub>2</sub>C has been confirmed from the increased splitting of π and π* energy level of CO<sub>2</sub> for Hf<sub>2</sub>C compared to Mo<sub>2</sub>C. The dense electron localization contour maps further explained the ease of electron transfer to CO<sub>2</sub> involving Hf<sub>2</sub>C. Analysis of Gibbs free energy for successive steps for the conversion of CO<sub>2</sub> to CH<sub>4</sub> revealed that fuel conversion is more feasible with Hf<sub>2</sub>C over Mo<sub>2</sub>C.</p></div>\",\"PeriodicalId\":100960,\"journal\":{\"name\":\"Next Sustainability\",\"volume\":\"4 \",\"pages\":\"Article 100058\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949823624000357/pdfft?md5=86ebbce2fcc6034b5d0182f63b364bff&pid=1-s2.0-S2949823624000357-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949823624000357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949823624000357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在此,我们对二维 MXenes(M=Mo、Hf)M2C 型上将 CO2 转化为燃料(CH4)的过程进行了全面分析。对穆利肯电荷、吸附能、键角和键距等参数的评估表明,与 Mo2C 相比,Hf2C 的活化作用更明显,这是因为前者比后者向二氧化碳转移了更高的电子密度。与自由 M2C 相比,吸附了 CO2 的 M2C 的价带和导带发生了很大的移动,从而导致大量电荷从 MXenes 转移。与 Mo2C 相比,Hf2C 的 CO2 π 和 π* 能级的分裂增加,这证实了 Hf2C 对 CO2 的活化作用比 Hf2C 强。密集的电子定位等值线图进一步说明了 Hf2C 易于将电子转移到 CO2。对 CO2 转化为 CH4 的连续步骤的吉布斯自由能分析表明,与 Mo2C 相比,Hf2C 的燃料转化更为可行。
Electrochemical conversion of CO2 to fuel by MXenes (M2C): A first principles study
Herein we have made a comprehensive analysis for the conversion of CO2 to fuel (CH4) on two dimensional MXenes (M=Mo, Hf) of the type M2C. Evaluation of parameters like Mulliken charge, adsorption energy, bond angle and bond distance demonstrated that activation is more pronounced with Hf2C compared to Mo2C due to transfer of higher electron density to CO2 in the former than in the latter case. CO2 adsorbed M2C realizes large shift of valance and conduction band vis-a-vis free M2C, leading to substantial charge transfer from MXenes. The enhanced activation of CO2 over Hf2C has been confirmed from the increased splitting of π and π* energy level of CO2 for Hf2C compared to Mo2C. The dense electron localization contour maps further explained the ease of electron transfer to CO2 involving Hf2C. Analysis of Gibbs free energy for successive steps for the conversion of CO2 to CH4 revealed that fuel conversion is more feasible with Hf2C over Mo2C.