聚酰胺 66 及其模型化合物的热降解

IF 6.3 2区 化学 Q1 POLYMER SCIENCE
Zixuan Zheng , John Lou Yao , Qiang Yao
{"title":"聚酰胺 66 及其模型化合物的热降解","authors":"Zixuan Zheng ,&nbsp;John Lou Yao ,&nbsp;Qiang Yao","doi":"10.1016/j.polymdegradstab.2024.110909","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal degradation of N, N'-dibutyladipamide and polyamide 66 (PA66) was carried out in a large-scale experimental setup with nitrogen sweeping in order to collect elusive degradation intermediates. At a high nitrogen flow rate, 1-butylazepane-2,7-dione was identified as a major degradation product from the thermal decomposition of N, N'-dibutyladipamide. Upon heating, 1-butylazepane-2,7-dione produced cyclopentanone and its derivatives, dibutylurea and a nitrile that constituted the majority of degradation products of N, N'-dibutyladipamide, proving that the 7-membered heterocycle compound is a crucial primary degradation product as well as a precursor for the secondary degradation products of N, N'-dibutyladipamide. Subsequently, chemistry concerning the generation and decomposition of 1-butylazepane-2,7-dione was developed for the thermal decomposition of DBA. On the other hand, hexamethylenediamine, 1,8-diazacyclotetradecane-2,7-dione, cyclopentanone and its derivatives were collected as important degradation products from the thermal decomposition of PA66. In view of the structural similarity between DBA and PA66 and their comparable degradation products, a mechanism centering on the generation and decomposition of a 7-membered ring has ultimately been established for thermal degradation of PA66.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal degradation of polyamide 66 and its model compound\",\"authors\":\"Zixuan Zheng ,&nbsp;John Lou Yao ,&nbsp;Qiang Yao\",\"doi\":\"10.1016/j.polymdegradstab.2024.110909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermal degradation of N, N'-dibutyladipamide and polyamide 66 (PA66) was carried out in a large-scale experimental setup with nitrogen sweeping in order to collect elusive degradation intermediates. At a high nitrogen flow rate, 1-butylazepane-2,7-dione was identified as a major degradation product from the thermal decomposition of N, N'-dibutyladipamide. Upon heating, 1-butylazepane-2,7-dione produced cyclopentanone and its derivatives, dibutylurea and a nitrile that constituted the majority of degradation products of N, N'-dibutyladipamide, proving that the 7-membered heterocycle compound is a crucial primary degradation product as well as a precursor for the secondary degradation products of N, N'-dibutyladipamide. Subsequently, chemistry concerning the generation and decomposition of 1-butylazepane-2,7-dione was developed for the thermal decomposition of DBA. On the other hand, hexamethylenediamine, 1,8-diazacyclotetradecane-2,7-dione, cyclopentanone and its derivatives were collected as important degradation products from the thermal decomposition of PA66. In view of the structural similarity between DBA and PA66 and their comparable degradation products, a mechanism centering on the generation and decomposition of a 7-membered ring has ultimately been established for thermal degradation of PA66.</p></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024002532\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024002532","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

为了收集难以捉摸的降解中间产物,我们在大规模实验装置中利用氮气扫频对 N, N'-dibutyladipamide 和聚酰胺 66 (PA66) 进行了热降解。在高氮气流速下,1-丁基氮杂环庚烷-2,7-二酮被确定为 N,N'-二丁基二酰胺热分解的主要降解产物。加热后,1-丁基氮杂环庚烷-2,7-二酮产生环戊酮及其衍生物、二丁基脲和一种腈,这些物质构成了 N,N'-二丁基二酰胺的大部分降解产物,证明这种 7 元杂环化合物是一种重要的初级降解产物,也是 N,N'-二丁基二酰胺次级降解产物的前体。随后,有关 1-丁基氮杂环庚烷-2,7-二酮生成和分解的化学方法被开发出来,用于 DBA 的热分解。另一方面,在 PA66 的热分解过程中,收集到了六甲基二胺、1,8-二氮杂环十四烷-2,7-二酮、环戊酮及其衍生物等重要降解产物。鉴于 DBA 和 PA66 在结构上的相似性及其降解产物的可比性,最终确定了以 7 元环的生成和分解为中心的 PA66 热降解机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermal degradation of polyamide 66 and its model compound

Thermal degradation of polyamide 66 and its model compound

Thermal degradation of N, N'-dibutyladipamide and polyamide 66 (PA66) was carried out in a large-scale experimental setup with nitrogen sweeping in order to collect elusive degradation intermediates. At a high nitrogen flow rate, 1-butylazepane-2,7-dione was identified as a major degradation product from the thermal decomposition of N, N'-dibutyladipamide. Upon heating, 1-butylazepane-2,7-dione produced cyclopentanone and its derivatives, dibutylurea and a nitrile that constituted the majority of degradation products of N, N'-dibutyladipamide, proving that the 7-membered heterocycle compound is a crucial primary degradation product as well as a precursor for the secondary degradation products of N, N'-dibutyladipamide. Subsequently, chemistry concerning the generation and decomposition of 1-butylazepane-2,7-dione was developed for the thermal decomposition of DBA. On the other hand, hexamethylenediamine, 1,8-diazacyclotetradecane-2,7-dione, cyclopentanone and its derivatives were collected as important degradation products from the thermal decomposition of PA66. In view of the structural similarity between DBA and PA66 and their comparable degradation products, a mechanism centering on the generation and decomposition of a 7-membered ring has ultimately been established for thermal degradation of PA66.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Degradation and Stability
Polymer Degradation and Stability 化学-高分子科学
CiteScore
10.10
自引率
10.20%
发文量
325
审稿时长
23 days
期刊介绍: Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology. Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal. However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信