对流扩散型奇异扰动四阶问题的局部非连续伽勒金方法

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Yanhua Liu, Xuesong Wang, Yao Cheng
{"title":"对流扩散型奇异扰动四阶问题的局部非连续伽勒金方法","authors":"Yanhua Liu,&nbsp;Xuesong Wang,&nbsp;Yao Cheng","doi":"10.1016/j.apnum.2024.06.023","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a local discontinuous Galerkin (LDG) method for a fourth-order singularly perturbed problem of convection-diffusion type. The existence and uniqueness of the computed solution are verified. Using the Shishkin mesh we derive an optimal-order energy-norm error estimate which is uniformly valid in the perturbation parameter. Numerical experiments are also given to support our theoretical findings.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"205 ","pages":"Pages 16-37"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local discontinuous Galerkin method for a singularly perturbed fourth-order problem of convection-diffusion type\",\"authors\":\"Yanhua Liu,&nbsp;Xuesong Wang,&nbsp;Yao Cheng\",\"doi\":\"10.1016/j.apnum.2024.06.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a local discontinuous Galerkin (LDG) method for a fourth-order singularly perturbed problem of convection-diffusion type. The existence and uniqueness of the computed solution are verified. Using the Shishkin mesh we derive an optimal-order energy-norm error estimate which is uniformly valid in the perturbation parameter. Numerical experiments are also given to support our theoretical findings.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"205 \",\"pages\":\"Pages 16-37\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001715\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001715","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们针对对流扩散类型的四阶奇异扰动问题开发了一种局部非连续伽勒金(LDG)方法。我们验证了计算解的存在性和唯一性。利用 Shishkin 网格,我们推导出了最优阶能量-正态误差估计值,该估计值在扰动参数中均匀有效。我们还给出了数值实验来支持我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local discontinuous Galerkin method for a singularly perturbed fourth-order problem of convection-diffusion type

We develop a local discontinuous Galerkin (LDG) method for a fourth-order singularly perturbed problem of convection-diffusion type. The existence and uniqueness of the computed solution are verified. Using the Shishkin mesh we derive an optimal-order energy-norm error estimate which is uniformly valid in the perturbation parameter. Numerical experiments are also given to support our theoretical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信