海洋玄武岩中近海风力发电二氧化碳去除和碳封存潜在地点的封存容量估算和现场条件

Heather Norton , Devin Todd , Curran Crawford
{"title":"海洋玄武岩中近海风力发电二氧化碳去除和碳封存潜在地点的封存容量估算和现场条件","authors":"Heather Norton ,&nbsp;Devin Todd ,&nbsp;Curran Crawford","doi":"10.1016/j.ccst.2024.100231","DOIUrl":null,"url":null,"abstract":"<div><p>Negative emission technologies (NETs) are considered essential to keep global warming below 2 °C. Situating wind-powered carbon dioxide removal (CDR) devices offshore and injecting carbon dioxide (CO2) into deep-water sub-seafloor basalt aquifers has the potential to offer large CO2 removal capacity. It also avoids land and water-use competition and provides additional low-risk protections against post-injection leakage compared to terrestrial CO2 storage. This paper seeks to identify locations where offshore wind and potential basalt storage locations exist within close proximity to one another around the globe. A global mean wind power density map at 150 m height was computed using 30 years (1986–2016) of ERA5 hourly wind speed reanalysis data. Offshore regions with mean wind speed greater than 8 m/s were identified. Offshore regions with basalt aquifers along seismic or aseismic ridges which provide potential CO2 storage sites were identified and selected based on sediment thickness, age, and distance from plate boundaries. Four scenarios were constructed to capture a range of constraints with implications for technical, economic and regulatory difficulties. For each scenario, eligible regions for CO2 injection were filled by regularly spaced grid points and the distance to the nearest eligible wind resource was calculated for each point to identify the most promising configurations. Total available storage capacity within reach of wind resources was estimated to be between 4,300Gt and 196,000Gt depending on both uncertainties in porosity and other imposed constraints; even the most conservative estimates represent enormous capacity compared to global targets for negative emissions technologies. Typically, the best areas were found close to the poles due to the greater prevalence of good wind resources in those areas. Site-specific properties such as water depth and distance from shore are computed for the identified locations in order to characterize the conditions in which such locations are typically found.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000435/pdfft?md5=969569c23f5538d2317a8e29f0b254c1&pid=1-s2.0-S2772656824000435-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Storage capacity estimates and site conditions of potential locations for offshore-wind powered carbon dioxide removal and carbon sequestration in ocean basalt\",\"authors\":\"Heather Norton ,&nbsp;Devin Todd ,&nbsp;Curran Crawford\",\"doi\":\"10.1016/j.ccst.2024.100231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Negative emission technologies (NETs) are considered essential to keep global warming below 2 °C. Situating wind-powered carbon dioxide removal (CDR) devices offshore and injecting carbon dioxide (CO2) into deep-water sub-seafloor basalt aquifers has the potential to offer large CO2 removal capacity. It also avoids land and water-use competition and provides additional low-risk protections against post-injection leakage compared to terrestrial CO2 storage. This paper seeks to identify locations where offshore wind and potential basalt storage locations exist within close proximity to one another around the globe. A global mean wind power density map at 150 m height was computed using 30 years (1986–2016) of ERA5 hourly wind speed reanalysis data. Offshore regions with mean wind speed greater than 8 m/s were identified. Offshore regions with basalt aquifers along seismic or aseismic ridges which provide potential CO2 storage sites were identified and selected based on sediment thickness, age, and distance from plate boundaries. Four scenarios were constructed to capture a range of constraints with implications for technical, economic and regulatory difficulties. For each scenario, eligible regions for CO2 injection were filled by regularly spaced grid points and the distance to the nearest eligible wind resource was calculated for each point to identify the most promising configurations. Total available storage capacity within reach of wind resources was estimated to be between 4,300Gt and 196,000Gt depending on both uncertainties in porosity and other imposed constraints; even the most conservative estimates represent enormous capacity compared to global targets for negative emissions technologies. Typically, the best areas were found close to the poles due to the greater prevalence of good wind resources in those areas. Site-specific properties such as water depth and distance from shore are computed for the identified locations in order to characterize the conditions in which such locations are typically found.</p></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772656824000435/pdfft?md5=969569c23f5538d2317a8e29f0b254c1&pid=1-s2.0-S2772656824000435-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656824000435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824000435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

负排放技术(NET)被认为是将全球变暖控制在 2 °C 以下的关键。在近海安装风力二氧化碳去除(CDR)装置,并将二氧化碳(CO2)注入深水海底玄武岩含水层,有可能提供巨大的二氧化碳去除能力。与陆地二氧化碳封存相比,它还能避免土地和水的使用竞争,并提供额外的低风险保护,防止注入后泄漏。本文旨在确定全球范围内离岸风能和潜在玄武岩封存地点相距较近的位置。利用 30 年(1986-2016 年)ERA5 每小时风速再分析数据,计算了 150 米高度的全球平均风力密度图。确定了平均风速大于 8 米/秒的近海区域。根据沉积厚度、年龄以及与板块边界的距离,确定并选择了沿地震脊或无地震脊有玄武岩含水层的近海区域,这些含水层可提供潜在的二氧化碳封存地点。我们构建了四种情景,以反映对技术、经济和监管困难产生影响的一系列限制因素。在每种情况下,符合二氧化碳注入条件的区域由间隔规则的网格点填充,并计算每个点到最近符合条件的风力资源的距离,以确定最有前景的配置。根据孔隙度的不确定性和其他强加的限制因素,在风能资源可及范围内的总可用封存容量估计在 4300 千兆吨到 196000 千兆吨之间;与负排放技术的全球目标相比,即使是最保守的估计也代表了巨大的容量。通常情况下,最佳地区位于两极附近,因为这些地区的风力资源更为丰富。对已确定地点的特定属性(如水深和离岸距离)进行了计算,以描述这些地点的典型条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Storage capacity estimates and site conditions of potential locations for offshore-wind powered carbon dioxide removal and carbon sequestration in ocean basalt

Negative emission technologies (NETs) are considered essential to keep global warming below 2 °C. Situating wind-powered carbon dioxide removal (CDR) devices offshore and injecting carbon dioxide (CO2) into deep-water sub-seafloor basalt aquifers has the potential to offer large CO2 removal capacity. It also avoids land and water-use competition and provides additional low-risk protections against post-injection leakage compared to terrestrial CO2 storage. This paper seeks to identify locations where offshore wind and potential basalt storage locations exist within close proximity to one another around the globe. A global mean wind power density map at 150 m height was computed using 30 years (1986–2016) of ERA5 hourly wind speed reanalysis data. Offshore regions with mean wind speed greater than 8 m/s were identified. Offshore regions with basalt aquifers along seismic or aseismic ridges which provide potential CO2 storage sites were identified and selected based on sediment thickness, age, and distance from plate boundaries. Four scenarios were constructed to capture a range of constraints with implications for technical, economic and regulatory difficulties. For each scenario, eligible regions for CO2 injection were filled by regularly spaced grid points and the distance to the nearest eligible wind resource was calculated for each point to identify the most promising configurations. Total available storage capacity within reach of wind resources was estimated to be between 4,300Gt and 196,000Gt depending on both uncertainties in porosity and other imposed constraints; even the most conservative estimates represent enormous capacity compared to global targets for negative emissions technologies. Typically, the best areas were found close to the poles due to the greater prevalence of good wind resources in those areas. Site-specific properties such as water depth and distance from shore are computed for the identified locations in order to characterize the conditions in which such locations are typically found.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信