Zhiqiang Zuo , Yaxin Xing , Xi Lu , Tao Liu , Min Zheng , Miao Guo , Yanchen Liu , Xia Huang
{"title":"利用亚硝酸盐微生物同时去除下水道中的硫化物和甲烷","authors":"Zhiqiang Zuo , Yaxin Xing , Xi Lu , Tao Liu , Min Zheng , Miao Guo , Yanchen Liu , Xia Huang","doi":"10.1016/j.wroa.2024.100231","DOIUrl":null,"url":null,"abstract":"<div><p>Chemicals are commonly dosed in sewer systems to reduce the emission of hydrogen sulfide (H<sub>2</sub>S) and methane (CH<sub>4</sub>), incurring high costs and environmental concerns. Nitrite dosing is a promising approach as nitrite can be produced from urine wastewater, which is a feasible integrated water management strategy. However, nitrite dosing usually requires strict conditions, e.g., relatively high nitrite concentration (e.g., ∼200 mg N/L) and acidic environment, to inhibit microorganisms. In contrast to “microbial inhibition”, this study proposes “microbial utilization” concept, i.e., utilizing nitrite as a substrate for H<sub>2</sub>S and CH<sub>4</sub> consumption in sewer. In a laboratory-scale sewer reactor, nitrite at a relatively low concentrations of 25–48 mg N/L was continuously dosed. Two nitrite-dependent microbial utilization processes, i.e., nitrite-dependent anaerobic methane oxidation (n-DAMO) and microbial sulfide oxidation, successfully occurred in conjunction with nitrite reduction. The occurrence of both processes achieved a 58 % reduction in dissolved methane and over 90 % sulfide removal in the sewer reactor, with microbial activities measured as 15.6 mg CH<sub>4</sub>/(L·h) and 29.4 mg S/(L·h), respectively. High copy numbers of n-DAMO bacteria and sulfide-oxidizing bacteria (SOB) were detected in both sewer biofilms and sediments. Mechanism analysis confirmed that the dosed nitrite at a relatively low level did not cause the inhibition of sulfidogenic process due to the downward migration of activity zones in sewer sediments. Therefore, the proposed “microbial utilization” concept offers a new alternative for simultaneous removal of sulfide and methane in sewers.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000215/pdfft?md5=501c1baaa975fd01ab4f95af98e74218&pid=1-s2.0-S2589914724000215-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nitrite-dependent microbial utilization for simultaneous removal of sulfide and methane in sewers\",\"authors\":\"Zhiqiang Zuo , Yaxin Xing , Xi Lu , Tao Liu , Min Zheng , Miao Guo , Yanchen Liu , Xia Huang\",\"doi\":\"10.1016/j.wroa.2024.100231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chemicals are commonly dosed in sewer systems to reduce the emission of hydrogen sulfide (H<sub>2</sub>S) and methane (CH<sub>4</sub>), incurring high costs and environmental concerns. Nitrite dosing is a promising approach as nitrite can be produced from urine wastewater, which is a feasible integrated water management strategy. However, nitrite dosing usually requires strict conditions, e.g., relatively high nitrite concentration (e.g., ∼200 mg N/L) and acidic environment, to inhibit microorganisms. In contrast to “microbial inhibition”, this study proposes “microbial utilization” concept, i.e., utilizing nitrite as a substrate for H<sub>2</sub>S and CH<sub>4</sub> consumption in sewer. In a laboratory-scale sewer reactor, nitrite at a relatively low concentrations of 25–48 mg N/L was continuously dosed. Two nitrite-dependent microbial utilization processes, i.e., nitrite-dependent anaerobic methane oxidation (n-DAMO) and microbial sulfide oxidation, successfully occurred in conjunction with nitrite reduction. The occurrence of both processes achieved a 58 % reduction in dissolved methane and over 90 % sulfide removal in the sewer reactor, with microbial activities measured as 15.6 mg CH<sub>4</sub>/(L·h) and 29.4 mg S/(L·h), respectively. High copy numbers of n-DAMO bacteria and sulfide-oxidizing bacteria (SOB) were detected in both sewer biofilms and sediments. Mechanism analysis confirmed that the dosed nitrite at a relatively low level did not cause the inhibition of sulfidogenic process due to the downward migration of activity zones in sewer sediments. Therefore, the proposed “microbial utilization” concept offers a new alternative for simultaneous removal of sulfide and methane in sewers.</p></div>\",\"PeriodicalId\":52198,\"journal\":{\"name\":\"Water Research X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589914724000215/pdfft?md5=501c1baaa975fd01ab4f95af98e74218&pid=1-s2.0-S2589914724000215-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research X\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589914724000215\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914724000215","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Nitrite-dependent microbial utilization for simultaneous removal of sulfide and methane in sewers
Chemicals are commonly dosed in sewer systems to reduce the emission of hydrogen sulfide (H2S) and methane (CH4), incurring high costs and environmental concerns. Nitrite dosing is a promising approach as nitrite can be produced from urine wastewater, which is a feasible integrated water management strategy. However, nitrite dosing usually requires strict conditions, e.g., relatively high nitrite concentration (e.g., ∼200 mg N/L) and acidic environment, to inhibit microorganisms. In contrast to “microbial inhibition”, this study proposes “microbial utilization” concept, i.e., utilizing nitrite as a substrate for H2S and CH4 consumption in sewer. In a laboratory-scale sewer reactor, nitrite at a relatively low concentrations of 25–48 mg N/L was continuously dosed. Two nitrite-dependent microbial utilization processes, i.e., nitrite-dependent anaerobic methane oxidation (n-DAMO) and microbial sulfide oxidation, successfully occurred in conjunction with nitrite reduction. The occurrence of both processes achieved a 58 % reduction in dissolved methane and over 90 % sulfide removal in the sewer reactor, with microbial activities measured as 15.6 mg CH4/(L·h) and 29.4 mg S/(L·h), respectively. High copy numbers of n-DAMO bacteria and sulfide-oxidizing bacteria (SOB) were detected in both sewer biofilms and sediments. Mechanism analysis confirmed that the dosed nitrite at a relatively low level did not cause the inhibition of sulfidogenic process due to the downward migration of activity zones in sewer sediments. Therefore, the proposed “microbial utilization” concept offers a new alternative for simultaneous removal of sulfide and methane in sewers.
Water Research XEnvironmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍:
Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.